mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
61 lines
1.6 KiB
Python
61 lines
1.6 KiB
Python
|
import os
|
||
|
|
||
|
from langchain.chat_models import ChatOpenAI
|
||
|
from langchain.embeddings import OpenAIEmbeddings
|
||
|
from langchain.prompts import ChatPromptTemplate
|
||
|
from langchain.pydantic_v1 import BaseModel
|
||
|
from langchain.schema.output_parser import StrOutputParser
|
||
|
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||
|
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
|
||
|
|
||
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
||
|
OPENSEARCH_URL = os.getenv("OPENSEARCH_URL", "https://localhost:9200")
|
||
|
OPENSEARCH_USERNAME = os.getenv("OPENSEARCH_USERNAME", "admin")
|
||
|
OPENSEARCH_PASSWORD = os.getenv("OPENSEARCH_PASSWORD", "admin")
|
||
|
OPENSEARCH_INDEX_NAME = os.getenv("OPENSEARCH_INDEX_NAME", "langchain-test")
|
||
|
|
||
|
|
||
|
embedding_function = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
||
|
|
||
|
vector_store = OpenSearchVectorSearch(
|
||
|
opensearch_url=OPENSEARCH_URL,
|
||
|
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
||
|
index_name=OPENSEARCH_INDEX_NAME,
|
||
|
embedding_function=embedding_function,
|
||
|
verify_certs=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
retriever = vector_store.as_retriever()
|
||
|
|
||
|
|
||
|
def format_docs(docs):
|
||
|
return "\n\n".join([d.page_content for d in docs])
|
||
|
|
||
|
|
||
|
# RAG prompt
|
||
|
template = """Answer the question based only on the following context:
|
||
|
{context}
|
||
|
Question: {question}
|
||
|
"""
|
||
|
prompt = ChatPromptTemplate.from_template(template)
|
||
|
|
||
|
# RAG
|
||
|
model = ChatOpenAI(openai_api_key=OPENAI_API_KEY)
|
||
|
chain = (
|
||
|
RunnableParallel(
|
||
|
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
||
|
)
|
||
|
| prompt
|
||
|
| model
|
||
|
| StrOutputParser()
|
||
|
)
|
||
|
|
||
|
|
||
|
# Add typing for input
|
||
|
class Question(BaseModel):
|
||
|
__root__: str
|
||
|
|
||
|
|
||
|
chain = chain.with_types(input_type=Question)
|