2023-10-27 02:44:30 +00:00
|
|
|
from langchain.agents import AgentExecutor
|
2023-10-26 01:47:42 +00:00
|
|
|
from langchain.chat_models import ChatAnthropic
|
|
|
|
from langchain.prompts import ChatPromptTemplate
|
|
|
|
from langchain.schema.output_parser import StrOutputParser
|
2023-12-01 21:36:40 +00:00
|
|
|
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
from .agent_scratchpad import format_agent_scratchpad
|
|
|
|
from .output_parser import parse_output
|
2023-10-27 02:44:30 +00:00
|
|
|
from .prompts import retrieval_prompt
|
|
|
|
from .retriever import retriever_description, search
|
2023-10-26 01:47:42 +00:00
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
|
|
[
|
|
|
|
("user", retrieval_prompt),
|
|
|
|
("ai", "{agent_scratchpad}"),
|
|
|
|
]
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
prompt = prompt.partial(retriever_description=retriever_description)
|
|
|
|
|
|
|
|
model = ChatAnthropic(model="claude-2", temperature=0, max_tokens_to_sample=1000)
|
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
chain = (
|
|
|
|
RunnablePassthrough.assign(
|
|
|
|
agent_scratchpad=lambda x: format_agent_scratchpad(x["intermediate_steps"])
|
|
|
|
)
|
|
|
|
| prompt
|
|
|
|
| model.bind(stop_sequences=["</search_query>"])
|
|
|
|
| StrOutputParser()
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
agent_chain = (
|
2023-12-01 21:36:40 +00:00
|
|
|
RunnableParallel(
|
2023-10-29 22:50:09 +00:00
|
|
|
{
|
|
|
|
"partial_completion": chain,
|
|
|
|
"intermediate_steps": lambda x: x["intermediate_steps"],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
| parse_output
|
|
|
|
)
|
2023-10-26 01:47:42 +00:00
|
|
|
|
2023-10-29 22:50:09 +00:00
|
|
|
executor = AgentExecutor(agent=agent_chain, tools=[search], verbose=True)
|