mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
107 lines
3.6 KiB
Python
107 lines
3.6 KiB
Python
|
"""Question answering over a graph."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
from langchain_core.callbacks import CallbackManagerForChainRun
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts import BasePromptTemplate
|
||
|
from langchain_core.pydantic_v1 import Field
|
||
|
|
||
|
from langchain_community.chains.graph_qa.prompts import (
|
||
|
CYPHER_QA_PROMPT,
|
||
|
NGQL_GENERATION_PROMPT,
|
||
|
)
|
||
|
from langchain_community.graphs.nebula_graph import NebulaGraph
|
||
|
|
||
|
|
||
|
class NebulaGraphQAChain(Chain):
|
||
|
"""Chain for question-answering against a graph by generating nGQL statements.
|
||
|
|
||
|
*Security note*: Make sure that the database connection uses credentials
|
||
|
that are narrowly-scoped to only include necessary permissions.
|
||
|
Failure to do so may result in data corruption or loss, since the calling
|
||
|
code may attempt commands that would result in deletion, mutation
|
||
|
of data if appropriately prompted or reading sensitive data if such
|
||
|
data is present in the database.
|
||
|
The best way to guard against such negative outcomes is to (as appropriate)
|
||
|
limit the permissions granted to the credentials used with this tool.
|
||
|
|
||
|
See https://python.langchain.com/docs/security for more information.
|
||
|
"""
|
||
|
|
||
|
graph: NebulaGraph = Field(exclude=True)
|
||
|
ngql_generation_chain: LLMChain
|
||
|
qa_chain: LLMChain
|
||
|
input_key: str = "query" #: :meta private:
|
||
|
output_key: str = "result" #: :meta private:
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
"""Return the input keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
return [self.input_key]
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
"""Return the output keys.
|
||
|
|
||
|
:meta private:
|
||
|
"""
|
||
|
_output_keys = [self.output_key]
|
||
|
return _output_keys
|
||
|
|
||
|
@classmethod
|
||
|
def from_llm(
|
||
|
cls,
|
||
|
llm: BaseLanguageModel,
|
||
|
*,
|
||
|
qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT,
|
||
|
ngql_prompt: BasePromptTemplate = NGQL_GENERATION_PROMPT,
|
||
|
**kwargs: Any,
|
||
|
) -> NebulaGraphQAChain:
|
||
|
"""Initialize from LLM."""
|
||
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||
|
ngql_generation_chain = LLMChain(llm=llm, prompt=ngql_prompt)
|
||
|
|
||
|
return cls(
|
||
|
qa_chain=qa_chain,
|
||
|
ngql_generation_chain=ngql_generation_chain,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, str]:
|
||
|
"""Generate nGQL statement, use it to look up in db and answer question."""
|
||
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
|
callbacks = _run_manager.get_child()
|
||
|
question = inputs[self.input_key]
|
||
|
|
||
|
generated_ngql = self.ngql_generation_chain.run(
|
||
|
{"question": question, "schema": self.graph.get_schema}, callbacks=callbacks
|
||
|
)
|
||
|
|
||
|
_run_manager.on_text("Generated nGQL:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
generated_ngql, color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
context = self.graph.query(generated_ngql)
|
||
|
|
||
|
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
|
||
|
_run_manager.on_text(
|
||
|
str(context), color="green", end="\n", verbose=self.verbose
|
||
|
)
|
||
|
|
||
|
result = self.qa_chain(
|
||
|
{"question": question, "context": context},
|
||
|
callbacks=callbacks,
|
||
|
)
|
||
|
return {self.output_key: result[self.qa_chain.output_key]}
|