langchain/docs/extras/integrations/text_embedding/ernie.ipynb

61 lines
1.3 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ERNIE Embedding-V1\n",
"\n",
"[ERNIE Embedding-V1](https://cloud.baidu.com/doc/WENXINWORKSHOP/s/alj562vvu) is a text representation model based on Baidu Wenxin's large-scale model technology, \n",
"which converts text into a vector form represented by numerical values, and is used in text retrieval, information recommendation, knowledge mining and other scenarios."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import ErnieEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = ErnieEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"doc_results = embeddings.embed_documents([\"foo\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}