langchain/libs/partners/anthropic/langchain_anthropic/output_parsers.py

67 lines
2.1 KiB
Python
Raw Normal View History

2024-04-04 20:22:48 +00:00
from typing import Any, List, Optional, Type, TypedDict, cast
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import BaseGenerationOutputParser
from langchain_core.outputs import ChatGeneration, Generation
from langchain_core.pydantic_v1 import BaseModel
class _ToolCall(TypedDict):
name: str
args: dict
id: str
index: int
class ToolsOutputParser(BaseGenerationOutputParser):
first_tool_only: bool = False
args_only: bool = False
pydantic_schemas: Optional[List[Type[BaseModel]]] = None
class Config:
extra = "forbid"
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
"""Parse a list of candidate model Generations into a specific format.
Args:
result: A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns:
Structured output.
"""
if not result or not isinstance(result[0], ChatGeneration):
return None if self.first_tool_only else []
tool_calls: List = _extract_tool_calls(result[0].message)
if self.pydantic_schemas:
tool_calls = [self._pydantic_parse(tc) for tc in tool_calls]
elif self.args_only:
tool_calls = [tc["args"] for tc in tool_calls]
else:
pass
if self.first_tool_only:
return tool_calls[0] if tool_calls else None
else:
return tool_calls
def _pydantic_parse(self, tool_call: _ToolCall) -> BaseModel:
cls_ = {schema.__name__: schema for schema in self.pydantic_schemas or []}[
tool_call["name"]
]
return cls_(**tool_call["args"])
def _extract_tool_calls(msg: BaseMessage) -> List[_ToolCall]:
if isinstance(msg.content, str):
return []
tool_calls = []
for i, block in enumerate(cast(List[dict], msg.content)):
if block["type"] != "tool_use":
continue
tool_calls.append(
_ToolCall(name=block["name"], args=block["input"], id=block["id"], index=i)
)
return tool_calls