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Abstract: A good choice of the proposal distribution is crucial for the rapid con-
vergence of the Metropolis algorithm. In this paper, given a family of parametric
Markovian kernels, we develop an adaptive algorithm for selecting the best kernel
that maximizes the expected squared jumped distance, an objective function that
characterizes the Markov chain. We demonstrate the effectiveness of our method
in several examples.
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1. Introduction
1.1. Adaptive MCMC algorithms: motivation and difficulties

The algorithm of Metropolis, Rosenbluth, Rosenbluth and Teller| (1953)) is an
important tool in statistical computation, especially in calculation of posterior
distributions arising in Bayesian statistics. The Metropolis algorithm evaluates
a (typically multivariate) target distribution 7(6) by generating a Markov chain
whose stationary distribution is 7. Practical implementations often suffer from
slow mixing and therefore inefficient estimation, for at least two reasons: the
jumps are too short and therefore simulation moves very slowly to the target
distribution; or the jumps end up in low probability areas of the target density,
causing the Markov chain to stand still most of the time. In practice, adap-
tive methods have been proposed in order to tune the choice of the proposal,
matching some criteria under the invariant distribution (e.g., [Kim, Shephard
and Chibl (1998)), Haario, Saksman and Tamminen| (1999), Laskey and Myers
(2003)), [Andrieu and Robert| (2001), and [Atchadé and Rosenthal (2003)). These
criteria are usually defined based on theoretical optimality results, for example,
for a d-dimensional target with i.i.d. components the optimal scaling of the jump-
ing kernel is ¢; = 2.38/v/d (Roberts, Gelman and Gilks (1997)). These results
are based on the asymptotic limit of infinite-dimensional iid target distributions
only, but in practice can be applied to dimensions as low as 5 (Gelman, Roberts
and Gilks| (1996)). Extensions of these results appear in [Roberts and Rosenthal
(2001]).
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Another approach is to coerce the acceptance probability to a preset value
(e.g., 44% for one-dimensional target). This can be difficult to apply due to the
complicated form of the target distribution which makes the optimal acceptance
probability value difficult to compute. In practice, problems arise for distribu-
tions (e.g., multimodal) for which the normal-theory optimal scaling results do
not apply, and for high-dimensional targets where initial optimization algorithms
cannot find easily the global maximum of the target function, yielding a proposal
covariance matrix different from the covariance matrix under the invariant dis-
tribution. A simple normal-normal hierarchical model example is considered in
Bédard! (2006); here the target distribution apparently breaks the assumption of
independent components, but can be transformed to a d-dimensional multivariate
independent normal target distribution with variance (1/(d+1),d+1,1,...,1).
In this case, the optimal acceptance rate(with respect to the best possible mixing
of states and fast convergence to stationarity) is 21.6%, slightly different than the
theoretical optimal acceptance rate of 23.4% that holds for inhomogeneous tar-
get distributions 7(2(®) = %, C; f(Cix;) (see Roberts and Rosenthal (2001)).
When the target distribution moves further away from normality, as for example
with the gamma hierarchical model, [Bédardl (2006) finds an optimal acceptance
rate of 16%. More general optimal acceptance rates are based on the asymptotic
behavior of the target distribution and can be found in some special cases (see
Bédard| (2006])).

In general, the adaptive proposal Metropolis algorithms do not simulate ex-
actly the target distribution: the Markovian property or time-homogeneity of
the transition kernel is lost, and ergodicity can be proved only under some con-
ditions (see [Tierney and Miral (I999)), Haario, Saksman and Tamminen| (2001)),
Holden| (2000), [Atchadé and Rosenthall (2003), Haario, Laine, Mira and Saksman
(2006), and [Roberts and Rosenthal (2006)). Adaptive methods that preserve the
Markovian properties by using regeneration times have the challenge of estimat-
ing regeneration times; this is difficult for algorithms other than independence
chain Metropolis (see |Gilks, Roberts, and Sahul (I998)). In practice, we follow
a two-stage finite adaptation approach: a series of adaptive optimization steps
followed by an MCMC run with fixed kernel. We also consider an infinite adap-
tation version of the algorithm.

1.2. Our proposed method based on expected squared jumped distance

In this paper we propose a general framework which allows for the develop-
ment of new MCMC algorithms that, in order to explore the target, are able to
learn automatically the best strategy among a set of proposed strategies {.J }er,
where I' is some finite-dimensional domain, in order to explore the target distri-
bution 7. Measures of efficiency in low-dimensional Markov chains are not unique
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(see |Gelman, Roberts and Gilks| (I996) for discussion). A natural measure of ef-
ficiency is the asymptotic variance of the sample mean ¢ = (1/T') thl 0:. The
asymptotic efficiency of Markov chain sampling for 6 is defined as

Var(w)(é?) -1
= = 1+2(p1+p2+~-)} , ver,

ff(7) = — 2~
¢ 9(7) Var(Jw)(H)

where Var () denotes the variance under independent sampling, Var (7 ) denotes
the limiting scale sample variance from the MCMC output, and pr = (1/(T —
k)) > 0:0;_j denotes the autocorrelation of the Markov chain at lag k. Our
measure and alternative measures of efficiency in the MCMUC literature are related
to the eigenvalue structure of the transition kernel (see, for example, Besag and
Green! (1993)). Fast convergence to stationarity in total variation distance is
attained by having a low second eigenvalue modulus. Maximizing asymptotic
efficiency is a criterion proposed in [Andrieu and Robert| (2001)) but the difficulty
lies in estimating the higher order autocorrelations po, p3, . . ., since these involve
estimation of an integral with respect to the Dirac measure. We maximize the
expected squared jumping distance (ESJD):

AN
ESID(y) = By, [[10041 — 1l1%] =201 = p1) - Var (60),

for a one-dimensional target distribution 7. Clearly, Var )(6:) is a function
of the stationary distribution only, thus choosing a transition rule to maximize
ESJD is equivalent to minimizing the first-order autocorrelation p; of the Markov
chain (and thus maximizing the efficiency if the higher order autocorrelations are
monotonically increasing with respect to p1). Nevertheless, it is easy to imag-
ine a bimodal example in several dimensions in which the monotonicity of the
higher order autocorrelations does not hold and jumps are always between the
modes, giving a negative lag-1 autocorrelation, but a positive lag-2 autocorrela-
tion. For this situation we can modify the efficiency criteria to include higher
order autocorrelations as the method we present is a case of a general frame-
work. However, our method will work under any other objective function and
d-dimensional target distribution (see Section 2.4).
We present here an outline of our procedure.

1. Start the Metropolis algorithm with some initial kernel; keep track of both
the Markov chain 6; and proposals 6;.

2. After every T iterations, update the covariance matrix of the jumping kernel
using the sample covariance matrix, with a scale factor that is computed by
optimizing an importance sampling estimate of the ESJD.

3. After some number of the above steps, stop the adaptive updating and run
the MCMC with a fixed kernel, treating the previous iterations up to that
point as a burn-in.
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Importance sampling techniques for Markov chains, unlike the methods for inde-
pendent variables, typically require the whole path for computing the importance
sampling weights, thus making them computationally expensive. We take advan-
tage of the properties of the Metropolis algorithm to use the importance weights
that depend only on the current state, and not of the whole history of the chain.
The multiple importance sampling techniques introduced in |Geyer and Thomp-
sonl (1992 reply to discussion) and |Geyer| (1996) help stabilize the variance of
the importance sampling estimate over a broad region, by treating observations
from different samples as observations from a mixture density. We study the
convergence of our method by using the techniques of |Geyer| (1994)) and [Roberts
and Rosenthall (2006]).

This paper describes our approach, in particular, the importance sampling
method used to optimize the parameters of the jumping kernel J,(-,-) after a
fixed number of steps, and illustrates it with several examples. We also compare
our procedure with the Robbins-Monro stochastic optimization algorithm (see,
for example, [Kushner and Yin! (2003))). We describe our algorithm in Section
2, and in Section 3 we discuss implementation with Gaussian kernels. Section 4
includes several examples, and we conclude with discussion and open problems
in Section 5.

2. The Adaptive Optimization Procedure
2.1. Notation

To define Hastings’s (I970) version of the algorithm, suppose that 7 is a
target density absolutely continuous with respect to Lebesgue measure, and let
{J5(-, ) }er be a family of proposal kernels. For fixed v € I" define

oy _ e [ (05 0)m(07)
a~ (6,0 )—mln{W,l}.

If we define the off-diagonal density of the Markov process,

J.(0,6%)ay(6,6%), 6+ 6*

po(6.0) = {0’ A @)

and set
() =1— /py(e, 0%)do"

then the Metropolis transition kernel can be written as

K, (0,d0%) = p-,(6,0%)d0* + r-,(0)54(d6").
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Throughout this paper we use the notation 6; for the proposal generated by the

A
Metropolis chain under proposal kernel J, (-, ;) and denote by A; = 6f — 6, the
proposed jumping distance.

2.2. Optimization of the proposal kernel after one set of simulations

Following [Andrieu and Robert! (2001)), we define the objective function that
we seek to maximize adaptively as

b SE[HG.0.00) = [ [ e @i (22

We start our procedure by choosing an initial proposal kernel J,; (-, -) and running
the Metropolis algorithm for T" steps. We use the T" simulation draws 6; and the
proposals 65 to construct the importance sampling estimator of h(7),

A Sy H (00, 07) - w1 (61, 67)

h = , Vyer, 2.3
7(7170) ST s (0060) y (2.3)

or the mean estimator

T
3 A1 " %
hT('YhO) = T ZH(% 0, et )w’Y|’Yo <9t7 0t)? Vyer, (2'4)
t=1
where
o A Iy (6,0%)
Weyjy (0,0%) = il (2.5)

J’YO (0’ 0*) ’

are the importance sampling weights. On the left side of (2.3)) the subscript T
emphasizes that the estimate comes from T simulation draws, and we explicitly
condition on vy because the importance sampling weights require J,,.

We typically choose as objective function the expected squared jumped dis-
tance H(v,0,0%) = ||0 — 9*”22,1047(0, 0*) = (0 — 0*)'S71(0 — %), (0, 6%), where
3. is the covariance matrix of the target distribution 7, because maximizing this
distance is equivalent to minimizing the first-order autocorrelation in covariance
norm. We return to this issue and discuss other choices of objective function in
Section 2.4. We optimize the empirical estimator (2.3]) using a numerical opti-
mization algorithm such as Brent’s (see, e.g., [Press, Teukolski, Vetterling and
Flannery| (2002))) as we further discuss in Section 2.6. In Section 4 we discuss
the computation time needed for the optimization.

2.3. Iterative optimization of the proposal kernel

If the starting point, =g, is not in the neighborhood of the optimum, then
an effective strategy is to iterate the optimization procedure, both to increase
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the amount of information used in the optimization and to use more effective
importance sampling distributions. The iteration allows us to get closer to the
optimum and not rely too strongly on our starting distribution. We explore the
effectiveness of the iterative optimization in several examples in Section 4. In
our algorithm, the “pilot data” used to estimate h will come from a series of
different proposal kernels. The function h can be estimated using the method
of multiple importance sampling (see [Hesterberg (1995))), yielding the following
algorithm based on adaptively updating the jumping kernel after steps 17,77 +
Ty, '+ 15+ 1Ts3,.... Fork=1,2,....

1. Run the Metropolis algorithm for T}, steps according to proposal rule J,, (-, -).

Save the sample and proposals, (01, 05,), ..., Ok, HZTk).
2. Find the maximum 1 of the empirical estimator h(y|ygx_1,--.,%0), defined
as

k T;
Ei:l Zt:l H(% Hit, ‘9;5) ’ w’Y"Yk—lv---a"/O( ity z*t)

E(V’Wk*lu"'avo) = % T s (26)
Doic1 Dt w’Y\’Yk—l,u.ryo(ez'ta 07)
where the multiple importance sampling weights are
o A J,(0,0%) .
Ways,m0 (0,07) = T j=1,...,k (2.7)

g:l Ti‘]’h‘fl (0> 9*) ’

We are treating the samples as having come from a mixture of j components j =
1,...,k. The weights satisfy the condition Z?Zl Zf;l Wy |y 1,0 (Oits 03) = 1,
and are derived from the individual importance sampling weights by substituting
Jy = w,),,Jy; in the numerator of (2.7). With independent multiple importance
sampling, these weights are optimal in the sense that they minimize the variance
of the empirical estimator (see Veach and Guibas (1995, Theorem 2)), and our
numerical experiments indicate that this greatly improves the convergence of our
method. It is not always necessary to keep track of the whole chain and propos-
als, quantities that can become computationally expensive for high-dimensional
distributions. For example, in the case of random walk Metropolis and ESJD ob-
jective function, it is enough to keep track of the jumped distance in covariance
norm and acceptance probability to construct the adaptive empirical estimator.
We discuss these issues further in Section 3.

2.4. Choices of the objective function

We focus on optimizing the expected squared jumped distance (ESJD), which
in one dimension is defined as

ESID(y) = E,, [!0t+1 — 9t\2] =Ey, [EJV {\9t+1 - 9t’2)(9ta Qf)H

— By, [AF -0 (60,67)] = 2(1 = p1) - Var £(61)
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and corresponds to the objective function H(v,0:,0;) = A? - a (64, 0F). Maxi-
mizing the ESJD is equivalent to minimizing first-order autocorrelation, which
is a convenient approximation to maximizing efficiency as we have discussed in
Section 1.2.

For d-dimensional targets, we scale the expected squared jumped distance
by the covariance norm and define the ESJD as

A *
ESID(3) = By, (611 — 0,132 = E[I1A013104(6,,67)].

This corresponds to the objective function, H(v,0;,0f) = [|A¢3_1a(0,6%) =
(A)'S7 Avay (0, 07), where X is the covariance matrix of the target distribution
m. The adaptive estimator (Z6]) then becomes

k T . .
ﬁ(’YWk Vk—1 71)é Zi:lzt:lHA”HQEﬂaw (Ot 071) - Wolyy,.oois (Ot 0) (2.8)
Zf:l Zgil Waypooos (Ot 0)

Maximizing the ESJD in covariance norm is equivalent to minimizing the lag-1

correlation of the d-dimensional process in covariance norm,
ESID(y) = By, 16,3 ]. (2.9)

When ¥ is unknown, we can use a current estimate in defining the objective
function at each step. We illustrate this in Sections 4.2 and 4.4.

For other choices of the objective function already studied in the MCMC
literature, see [Andrieu and Robert! (2001). In this paper we consider two opti-
mization rules: (1) maximizing the ESJD (because of its property of minimizing
the first-order autocorrelation) and (2) coercing the acceptance probability (be-
cause of its simplicity).

2.5. Convergence properties

For fixed proposal kernel, under conditions on 7 and J, such that the Markov
chain (6, 0;) is ¢ irreducible and aperiodic (see Meyn and Tweedie (1993)), the
ratio estimator izT converges to h with probability 1. For example, if J,(-;-) is
positive and continuous on R*x R%, and 7 is finite everywhere, then the algorithm
is m-irreducible. No additional assumptions are necessary to ensure aperiodicity.
In order to prove convergence of the maximizer of h to the maximizer of h, some
stronger properties are required.

Proposition 1. Let {(0, 6})}i=1.1 be the Markov chain and set of proposals gen-
erated by the Metropolis algorithm under transition kernel Jyy(-,-). If the chain
{(04,07)} is ¢p-irreducible, and hr(-|v0) and h are concave and twice differentiable
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everywhere, then BT(-]’yo) converges to h uniformly on compact sets with prob-
ability 1, and the mazximizers of hr(-|v) converge to the unique maximizer of
h.

Proof. The proof is a consequence of well-known theorems of convex analysis
stating that convergence on a dense set implies uniform convergence and conse-
quently convergence of the maximizers; this can be found in|Geyer and Thompson
(1992).

In general, it is difficult to check the concavity assumption for the empirical
ratio estimator, but we can prove convergence for the mean estimator.

Proposition 2. Let {(0,0])}i=1.7 be the Markov chain and set of proposals
generated by the Metropolis algorithm under transition kernel Jy,(-,-). If the
chain {(6:,6;)} is irreducible, and the mapping v — H(v,z,y)J(z,y), Vy € T
s continuous, and for every ~v € I' there is a neighborhood B of v such that

0;,0F
T sup H(g,0,,07) T2

E; T | <%
PEB ']“/0 (eb Ht )

v

(2.10)

then hr(-|v0) converges to h uniformly on compact sets with probability 1.
Proof. See the Appendix.

The convergence of the maximizer of hr to the maximizer of h is attained
under the additional conditions of |Geyer| (1994)).

Theorem. (Geyer| (1994, Theorem 4)) Assume that (yr)r, v« are the unique
mazimizers of (hy)r and h, respectively, and they are contained in a compact set.
If there exist a sequence ep — 0 such that hr(vyr|yo) > supy(hr(yr|y0)) — er,
then yr — Vs.-

Proposition 3. If the chain {(0;,05)} is ¢-irreducible and the objective function
is the expected squared jumped distance, H(v,x,y) = ||y — x||%,1a7(a:,y), then
the mean empirical estimator hp(y|yy) converges uniformly on compact sets for
the case of random walk Metropolis algorithm with proposal kernel J. (0, 60) ~

exp(—10 — 0*[I3,-1/(2%)).
Proof. See the Appendix.

Remark. We used both the mean and the ratio estimator for our numerical
experiments, but the convergence appeared to be faster than Andrieu and Robert,
and the estimates more stable for the ratio estimator (see Remark 1 below for
more details).

The infinite adaptation version can be proved to converge under some ad-
ditional restriction, [Haario, Saksman and Tamminen| (2001) and [Roberts and
Rosenthall (20006).
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Proposition 4. Let 7 be a distribution function with a compact support S € R?.
Consider the infinite adaptation version of the algorithm with Gaussian proposal
kernel (see Section 3) with T,, T co. Then the Markov chain is ergodic and the
Weak Law of Large Numbers holds for any bounded measurable function.

Proof. The proof is a consequence of Proposition 1 and Roberts and Rosenthal
(2000) Corollary 11 and remarks. By definition 7 has a compact support and
I' is a compact set, and we can take A as the finite Lebesgue measure restricted
to the the product space S x I'. The proposal kernels are multivariate normals,
which ensures that for fixed v € T', P, is ergodic for 7(-), and that the density
is continous and bounded. By Proposition 1 for large n, =, converges to v* a.s.,
which ensures that the diminishing adaptation condition of Theorem 5 is satisfied.
Since empirical estimates of the covariance matrix change at the nth iteration
by only O(1/n), it follows that the diminishing adaptation condition is satisfied
for the covariance matrix. Compact support and convergence of the parameter
also ensures that simultaneous uniform ergodicity condition from Theorem 5
holds which, in conjunction with Theorem 23 (Weak Law of Large Numbers),
concludes the proof. Clearly, the ESJD is uniformly bounded, thus the Law of
Large Numbers applies and, for T,, sufficiently large, v, converges to ~*.

Remark. One can also choose the adaptation times 7, to be the regenera-
tion times of the Markov chain (identified by enlarging the state space with an
atom) as demonstrated in [Brockwell and Kadanel (2005). This guarantees the
convergence of the estimators at the /n rate.

2.6. Practical optimization issues

Remark 1. The ratio estimator (2.3]) preserves the range of the objective func-
tion H(-), and has a lower variance than the mean estimator if the correlation
between the numerator and denominator is sufficiently high (seeCochran! (I977)).
Other choices for the empirical estimator include the mean estimator hr and es-
timators that use control variates that sum to 1 to correct for the bias (see, for
example, the regression and difference estimators of [Hesterberg| (1995))).

Multiple importance sampling attempts to give high weights to individual
proposal kernels that are close to the optimum. For more choices for the multiple
importance sampling weights, see [Veach and Guibas| (1995).

Remark 2. For the usual symmetric kernels (e.g., normal, Student-t, Cauchy)
and objective functions it is straightforward to derive analytical first and second
order derivatives and run a few steps of a maximization algorithm that incor-
porates the knowledge of the first and second derivative (see, e.g., [Press et al.
(2002)), for C code) or as already incorporated in the R function optim(). If
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analytic derivatives do not exist or they are expensive to compute, then a grid
maximization centered on the current optimal estimated is recommended.

Remark 3. Guidelines that ensure fast convergence of the importance sampling
estimator I, (h) = Y1y h(X)[(g5(X2))/(920(X:))] of I(h) = Eq. [A(X)] based on
the proposal distribution g, (-) are presented in [Robert and Casellal (I998): the
importance sampling distribution g,, should have heavier tails than the true dis-
tribution; minimizing the variance of importance weights minimizes the variance
of I,(h).

3. Implementation with Gaussian Kernel

For the case of a random walk Metropolis with Gaussian proposal density
Jy5(0+,0) ~ exp[— ([0 — 6*]|3-1)/(2v%)], the adaptive empirical estimator (Z.8)
of the ESJD is

k T;
A Zi:l Zt:l ||Ait||22f1a(9it, 0;) : wwm,...m(I!Aitlléﬂ)

B(7|7k77k—17"'7f}/1) k T;
D i1 2ot Wy (||AitH22.—1)

where

_exp(a/@A)
Sr L Tiexp(—2/292) /4

For computational purposes, we program the Metropolis algorithm so that it gives

Wry|vg,eee 71 (‘T) (31)

as output the proposed jumping distance in covariance norm ||Aj|ls,—1 and the
acceptance probability. This reduces the memory allocation for the opztimization
problem to one dimension, and the reduction is extremely important for high
dimensions where the alternative is to store d x T arrays. We give here a version
of our optimization algorithm that keeps track only of the jumped distance in
covariance norm, the acceptance probability, and the sample covariance matrix.

1. Choose a starting covariance matrix g for the Metropolis algorithm, for ex-
ample a numerical estimation of the covariance matrix of the target distribu-
tion.

2. Choose starting points for the simulation and some initial scaling for the pro-
posal kernel, for example c¢g = 2.38/ v/d. Run the algorithm for T} iterations,
saving the simulation draws 61;, the proposed jumping distances ||A1t||251
in covariance norm, and the acceptance probabilities (61, 67;). Optionally,
construct a vector consisting of the denominator of the multiple importance
sampling weights and discard the sample 601;.
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3. For k > 1, run the Metropolis algorithm using proposal kernel J,, s, . Update
the covariance matrix using the iterative procedure

Spsa(i,5) = (1— L )Em,j)

Ttotal

1
T;fotal

Ty
+ <(Ttotaz — T3)0k—1,i0k-1,; — TiotarOkiOk; + Z 9kt9jt>
=1

where Tiotqr = 11 + - - - + T}, and update the scaling using the adaptive algo-
rithm. We must also keep track of the d-dimensional mean, but this is not
difficult since it satisfies a simple recursion equation. Optionally, iteratively
update the denominator of the multiple sampling weights.

4. Discard the sample 0;; and repeat the above step.

In updating the covariance matrix we can also use the greedy-start proce-
dure using only the accepted jumps (see [Haario et al. (1999)). For random walk
Metropolis, analytic first and second order derivatives are helpful in the imple-
mentation of the optimization step (2) (e.g., using a optimization method), and
can be derived analytically. In our examples, we have had success updating the
proposal kernel every 50 iterations of the Metropolis algorithm, until approximate
convergence.

4. Examples

In our first three examples we use targets and proposals for which optimal
proposal kernels have been proposed in the MCMC literature to demonstrate
that our optimization procedure is reliable. We then apply our method on two
applications of Bayesian inference using Metropolis and Metropolis within Gibbs
updates.

4.1. Independent normal target distribution, d =1,...,100

We begin with the multivariate normal target distribution in d dimensions
with identity covariance matrix, for which the results from |Gelman, Roberts and
Gilksl (1996) and Roberts, Gelman and Gilks| (1997) regarding the choice of opti-
mal scaling apply. This example provides some guidelines regarding the speed of
convergence, the optimal sample size, and the effectiveness of our procedure for
different dimensions. In the experiments we have conducted, our approach out-
performs the stochastic Robbins-Monro algorithm, as implemented by [Atchadé
and Rosenthall (2003)). These are well-known recursive algorithms, used to solve
an equation h(vy) = 0 where h is unknown, but can be estimated with a noise.

Figure 6.1 shows the convergence to the maximum of the objective function
of the adaptive optimization procedure for dimensions d = 1, 10, 25, 50, and
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100, as well as the corresponding values of the multiple importance sampling
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Figure 6.1. Convergence to the optimal value (solid horizontal line) at each
step k of the adaptive optimization procedure, given seven equally spaced
starting points in the interval [0, 3%2.38/+/d], T = 50 iterations per step, for
the random walk Metropolis algorithm with multivariate standard normal
target of dimensions d = 1, 10, 25, 50, and 100. The second and third
column of figures show the multiple importance sampling estimator of ESJD
and average acceptance probability, respectively.

estimator of ESJD and average acceptance probability.

some initial high upward jumps. In order to eliminate high amplitude jumps
and slow convergence, the optimization could be restricted to the set where the

When starting from very small values, the estimated optimal scale shows

variance of the importance sampling weights is finite:

{’y > 0]y < 2max'yi2}.
i=1:k
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Optimized scale of kernel ESJD Avg. acceptance prob.
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Figure 6.2. Convergence of the adaptive optimization procedure using as
objective the coerced average acceptance probability (to the optimal accep-
tance value from Figure 6.1). The second and third column show the mul-
tiple importance sampling estimator of the ESJD and average acceptance
probability, respectively. Convergence of the optimal scale is faster than op-
timizing ESJD, although not necessarily to the most efficient jumping kernel
(see Figure 6.3).

In order to compare our algorithm with the stochastic Robbins-Monro algo-
rithm, we have also coerced the acceptance probability by estimating the average
acceptance probability using the objective function H(z,y) = o, (x,y) and then
minimizing a quadratic loss function h(y) = ([ [ ay(z,y)Jy(z,y)dydz — ay)?,
where « is defined as the acceptance rate corresponding to the Gaussian kernel
that minimizes the first-order autocorrelation.

The convergence of the algorithm coercing the acceptance probability method
is faster than maximizing ESJD, which we attribute to the fact that the accep-
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tance probability is less variable than ESJD, thus easier to estimate.

A comparison of our method with the stochastic Robbins-Monro algorithm
implemented by [Atchadé and Rosenthal (2003, Graph 2), shows that our method
converges faster and does not encounter the problems of the stochastic algorithm
which always goes in the first steps to a very low value and then converges from
below to the optimal value. It is generally better to overestimate than to un-
derestimate the optimal scaling. We have also successfully tested the robustness
of our method for extreme starting values(see online Appendix Section 2) and
correlated normal distribution (see online Appendix Section 1).

4.2. Mixture target distribution

We consider now a mixture of Gaussian target distributions with parameters
p = —95.0, a% = 1.0, uo = 5.0, 05 = 2.0 and weights (A = 0.2,1—X). The purpose
of this example is two-fold: first to illustrate that for a bimodal distribution,
where the optimal scaling is different from ¢y = 2.38/v/d (which holds for targets
with i.i.d. components), our method of tuning ESJD is computationally feasible
and produces better results. Second, to compare our method with the stochastic
Robbins-Monro algorithm of [Andrieu and Robert! (2001, Sec. 7.1) where the
acceptance probability is coerced to 40%.

We compare the results of our method given two objective functions, coercing
the acceptance probability to 44% and maximizing the ESJD, in terms of conver-
gence and efficiency. We also compare the speed of the stochastic Robbins-Monro
algorithm with the convergence speed of our adaptive optimization procedure.

The convergence to the “optimal” acceptance probability for the coerced
probability method is attained in 1,000 iterations for all starting values, an im-
provement over the approximately 10,000 iterations required under the stochastic
optimization algorithm (see [Andrieu and Robert! (2001, Figure 6)). Maximizing
ESJD yields an optimal scaling of v = 9, and a comparison of the correlation
structure p; (the bottom two graphs of Figure 6.3), at the optimal scale deter-
mined by the two objective functions, shows that the autocorrelation decreases
much faster for the optimal scale that maximizes ESJD, thus making the ESJD
a more appropriate efficiency measure.

4.3. 16-dimensional nonlinear model

We next consider an applied example, a model for serial dilution assays from
Gelman, Chew and Shnaidman| (2004),

e (ol 00, (25 2) 02

Ty = dz' : ac;-"“(i),
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Figure 6.3. Comparison of two objective functions for the 2-component mix-
ture target of [Andrieu and Robert] (2001]) using our adaptive optimization
algorithm: maximizing ESJD (left column of plots), and coercing the accep-
tance probability to 44% (right column of plots), with 50 iterations per step.
The coerced acceptance probability method converges slightly faster but to
a less efficient kernel (see ACF plot).

where y; are data points(intensities of color changes in a laboratory essay), x; are
concentrations of a compound of interest, and g(x, 3) = B1+[B2/(1+ (z/F3) )]
For each sample j, we model

log acé-mt ~ N <Iog(d§-mt -0;), (Uimt)Z) for the calibration sample, j =0

init

Z;

= 0; for the samples with unknown concentrations, j =1,...,10.

The constant A is arbitrary and is set to some value in the middle of the range of
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the data. The parameter o’ is assumed known, and a vague prior distribution
is applied to oy and 3. We estimate the unknown concentrations 6; using data y;
from a single plate with 16 calibration measurements and 8 measurements per un-
known sample. We know the initial concentration of standard sample 6y and the
dilution d;, and we need to estimate the 10 unknown concentrations ¢; and the
parameters (31, 82, 33, B4, 09, 0y, . For faster convergence the ¢;’s are reparame-
terized as logn; = log 6; —log 33. We use the Broyden-Fletcher-Goldfarb-Shanno
algorithm (e.g., [Press et all (2002))), to find the maximum likelihood, estimate
and start the Metropolis with a Gaussian proposal with the covariance set to the
inverse of the Hessian of the log likelihood computed in the maximum. We keep
the covariance matrix fixed and optimize only the choice of scaling. After the
algorithm converges to the maximum ESJD, we verify that the sample covariance
matches the choice of our initial covariance. Despite the complex structure of
the target distribution, the adaptive method converges to the theoretical optimal
value c¢g =~ 2.4/v/16 = 0.6 in k =30 steps with T; =50 iterations per step.

The computation time is 0.01 seconds per iteration in the Metropolis step,
and the optimization step takes an average 0.04 seconds per step. We update
after every 50 iterations and so the optimization adds 0.04/(50%0.01), or 8%, to
the computing time.

4.4. Hierarchical student-t model

Finally, we apply our method to Metropolis within Gibbs sampling with a
hierarchical Student-t model applied to the educational testing example from
Gelman, Carlin, Stern and Rubin! (2003, Appendix C). The model has the form,

Yj ~ N(Hj,ajz), oj known, for j=1,...,8,
0j\v, i, 7 ~ ty(p, %) for j=1,...,8,

where for each of eight schools j, y; is an unbiased estimate of the effect of
a scholastic aptitude test coaching program in the school, 0, is the true effect
in the school, and the effects are modeled hierarchically. We use an improper
joint uniform prior density for (u,7,1/v). To treat v as an unknown parameter,
the Gibbs sampling simulation includes a Metropolis step for sampling from
the conditional distribution of 1/v. Maximizing ESJD, the adaptive procedure
converges to the optimal scale v = 0.5 in 10 steps of 50 iterations each, the same
optimal value for coercing the acceptance probability to 44%.

5. Discussion

The proposed adaptive method is computationally easy to implement, and
maximizing ESJD greatly improves the performance of the Metropolis algorithm.
Our algorithm follows similar steps as recent work in adaptive updating of the
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Figure 6.4. 16-dimensional nonlinear model for a serial dilution experiment
of |Gelman, Chew and Shnaidman| (2004); convergence to optimal scaling,
for seven equally spaced starting values in [0, 2.4] with 50 iterations per step
and covariance matrix determined by initial optimization.

Metropolis kernel (Haario et al.l (1999), [Andrieu and Robertl (2001)), and [Atchadél
(2003)), but appears to converge faster, presumably because of the
numerical stability of the multiple importance sampling estimate in the context
of a Gaussian parametric family of proposal kernels. Coercing the acceptance
probability has slightly faster convergence than maximizing the ESJD, but not
necessarily to an optimal value as we have seen in Figure 6.3. For Gaussian and
independent distributions in high dimensions, samples of the Metropolis algo-
rithm approach an Ornstein-Uhlenbeck process and all reasonable optimization
criteria are equivalent (Roberts, Gelman and Gilks| (1997))), but this is not nec-
essarily the case for finite-dimensional problems or adaptive algorithms.
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Figure 6.5. Gibbs sampling with a Metropolis step for the inverse of the
degrees of freedom for the hierarchical t model for the eight schools example
of (2003); convergence of optimal scaling given starting values
in [0, 2] for two objective functions: maximizing ESJD (left column of plots)
and coercing average acceptance probability to 44% (right column of plots).

Other issues that arise in setting up the algorithm are the choice of multiple
sampling weights, the choice of number of iterations per step, and when to stop
the adaptation. In high-dimensional problems, we have optimized the scale of the
proposal kernel while updating the covariance matrix using empirical weighting
of posterior simulations (as in[Haario et al. (1999)). We also anticipate that these
methods can be generalized to optimize over more general MCMC algorithms,
for example slice sampling (Neal (2003))) and Langevin algorithms which could
achieve higher efficiencies than symmetric Metropolis algorithms (see
fand Rosenthal (2001)).
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Appendix

Proof of Proposition 2. The process {(6;,65)} is a positive recurrent Markov
chain with invariant probability 7 (dx)J,(z, dy). By assumption, 6 is irreducible
and thus satisfies the conditions of [Robert and Casellal (1998, Theorem 6.2.5 1i);
consequently,

r(1l0) = ZH 7, 00,070 (01, ) (A1)
—>//H(%:U,y)ﬂ(x)Jv(:r:,y)dwdy, a.s., Vy eT.

The next part of the proof is a particular version of [Geyer| (1994, Theorems 1
and 2), and we reproduce it here for completeness. Taking into account that
the union of null sets is a null set, we have that (A1) holds a.s. for all v in a
countable dense set in I'. By the weak convergence of measures,

9eB

T
P . “ .
inf T ;H(QS, 0t79t) ’ w¢|70 (eta et) H//d%g]ng(gba $,y)7T(IE)J¢($,y)dIEdy, a.s.

holds, for all v in a countable dense set in I". Convergence on compact sets is
a consequence of epiconvergence and hypoconvergence (see, for example, |Geyer
(1994)).

Proof of Proposition 3. We need to prove that the assumptions of Proposition
2 are verified. Clearly the continuity assumption is satisfied, and we now check
2I0). For simplicity, we omit the subscript and use the notation ||| = ||[|s-1.
Fix v > 0 and € > 0 small enough,

oy — ol
[] e (ol 2ot ) )l (o)
PE(v—e,y+e€) ’YO Yy—= ” )
=[] s (a1 Iy~ o atem@)dyds
pe(y—ete)
<[(/ sup (ol ly—alPdy )
d(y=€)?<[ly—z|><d(y+e€)* p€(v—e,7+e)

+/ (/ sup J¢(||y—w||)\|y—xll2dy>w(:c)dx.
ly—=zl?¢(d(v—€)2, d(v+e€)?) d€(v—e,v+e)
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Taking into account that

sup iexp Ay — 2|
pe(r—cte) D° 2¢?

Kitm ly—al? € dly = o2 dly +)?)
= q Jr—ellly — 2%, ly = =|* < d(y +¢)°
Jre(lly — 2], ly = 2[* > d(y — €)

with K > 0, the first integral becomes

/(/ sup (Jolly=l)ly—aPay ) )
d(y—e)?<|ly—z|?<d(v+e€)? pe(v—€y+e)

1
SK/(/ dy)ﬂ x)dx
0<||ly—z||2<d(v+e)? d(y —€)? (

1
=K ——dz < 00, (A.2)
0<|zl2<d(y+e)2 A(y — €)?

and the second integral can be bounded as follows:

/ ( / sup J¢<||y—xn)ny—xn?d@ﬂ(x)dw
ly—=|12¢(d(y—€)2,d(v+€)?) pe(v—ev+e)
-/ s Jollly = olDlly - Py ) (e
ly—zl2<d(v—€)? ¢€(v—ey+e)
(] s Jollly = olDlly eIy ) (o)
ly—=|12>d(y+€)? ¢e(y—e+e)
-(/ -l = el alPdy ) ()i
ly—z||2<d(v—e)?

“[(] ey = )y oIy ) < oo, (A3)
ly—al2>d(y-+)2
Combining ([A2)) and (A3) proves (ZI0).
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