mirror of
https://github.com/sezanzeb/input-remapper
synced 2024-11-16 06:12:58 +00:00
142 lines
4.8 KiB
Python
142 lines
4.8 KiB
Python
# -*- coding: utf-8 -*-
|
|
# input-remapper - GUI for device specific keyboard mappings
|
|
# Copyright (C) 2023 sezanzeb <proxima@sezanzeb.de>
|
|
#
|
|
# This file is part of input-remapper.
|
|
#
|
|
# input-remapper is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# input-remapper is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with input-remapper. If not, see <https://www.gnu.org/licenses/>.
|
|
import math
|
|
from typing import Dict, Union
|
|
|
|
|
|
class Transformation:
|
|
"""Callable that returns the axis transformation at x."""
|
|
|
|
def __init__(
|
|
self,
|
|
# if input values are > max_, the return value will be > 1
|
|
max_: Union[int, float],
|
|
min_: Union[int, float],
|
|
deadzone: float,
|
|
gain: float = 1,
|
|
expo: float = 0,
|
|
) -> None:
|
|
self._max = max_
|
|
self._min = min_
|
|
self._deadzone = deadzone
|
|
self._gain = gain
|
|
self._expo = expo
|
|
self._cache: Dict[float, float] = {}
|
|
|
|
def __call__(self, /, x: Union[int, float]) -> float:
|
|
if x not in self._cache:
|
|
y = (
|
|
self._calc_qubic(self._flatten_deadzone(self._normalize(x)))
|
|
* self._gain
|
|
)
|
|
self._cache[x] = y
|
|
|
|
return self._cache[x]
|
|
|
|
def set_range(self, min_, max_):
|
|
# TODO docstring
|
|
if min_ != self._min or max_ != self._max:
|
|
self._cache = {}
|
|
|
|
self._min = min_
|
|
self._max = max_
|
|
|
|
def _normalize(self, x: Union[int, float]) -> float:
|
|
"""Move and scale x to be between -1 and 1
|
|
return: x
|
|
"""
|
|
if self._min == -1 and self._max == 1:
|
|
return x
|
|
|
|
half_range = (self._max - self._min) / 2
|
|
middle = half_range + self._min
|
|
return (x - middle) / half_range
|
|
|
|
def _flatten_deadzone(self, x: float) -> float:
|
|
"""
|
|
y ^ y ^
|
|
| |
|
|
1 | / 1 | /
|
|
| / | /
|
|
| / ==> | ---
|
|
| / | /
|
|
-1 | / -1 | /
|
|
|------------> |------------>
|
|
-1 1 x -1 1 x
|
|
"""
|
|
if abs(x) <= self._deadzone:
|
|
return 0
|
|
|
|
return (x - self._deadzone * x / abs(x)) / (1 - self._deadzone)
|
|
|
|
def _calc_qubic(self, x: float) -> float:
|
|
"""Transforms an x value by applying a qubic function
|
|
|
|
k = 0 : will yield no transformation f(x) = x
|
|
1 > k > 0 : will yield low sensitivity for low x values
|
|
and high sensitivity for high x values
|
|
-1 < k < 0 : will yield high sensitivity for low x values
|
|
and low sensitivity for high x values
|
|
|
|
see also: https://www.geogebra.org/calculator/mkdqueky
|
|
|
|
Mathematical definition:
|
|
f(x,d) = d * x + (1 - d) * x ** 3 | d = 1 - k | k ∈ [0,1]
|
|
the function is designed such that if follows these constraints:
|
|
f'(0, d) = d and f(1, d) = 1 and f(-x,d) = -f(x,d)
|
|
|
|
for k ∈ [-1,0) the above function is mirrored at y = x
|
|
and d = 1 + k
|
|
"""
|
|
k = self._expo
|
|
|
|
if k == 0 or x == 0:
|
|
return x
|
|
|
|
if 0 < k <= 1:
|
|
d = 1 - k
|
|
return d * x + (1 - d) * x**3
|
|
|
|
if -1 <= k < 0:
|
|
# calculate return value with the real inverse solution
|
|
# of y = b * x + a * x ** 3
|
|
# LaTeX for better readability:
|
|
#
|
|
# y=\frac{{{\left( \sqrt{27 {{x}^{2}}+\frac{4 {{b}^{3}}}{a}}
|
|
# +{{3}^{\frac{3}{2}}} x\right) }^{\frac{1}{3}}}}
|
|
# {{{2}^{\frac{1}{3}}} \sqrt{3} {{a}^{\frac{1}{3}}}}
|
|
# -\frac{{{2}^{\frac{1}{3}}} b}
|
|
# {\sqrt{3} {{a}^{\frac{2}{3}}}
|
|
# {{\left( \sqrt{27 {{x}^{2}}+\frac{4 {{b}^{3}}}{a}}
|
|
# +{{3}^{\frac{3}{2}}} x\right) }^{\frac{1}{3}}}}
|
|
sign = x / abs(x)
|
|
x = math.fabs(x)
|
|
d = 1 + k
|
|
a = 1 - d
|
|
b = d
|
|
c = (math.sqrt(27 * x**2 + (4 * b**3) / a) + 3 ** (3 / 2) * x) ** (
|
|
1 / 3
|
|
)
|
|
y = c / (2 ** (1 / 3) * math.sqrt(3) * a ** (1 / 3)) - (
|
|
2 ** (1 / 3) * b
|
|
) / (math.sqrt(3) * a ** (2 / 3) * c)
|
|
return y * sign
|
|
|
|
raise ValueError("k must be between -1 and 1")
|