input-remapper/tests/unit/test_event_pipeline/test_axis_transformation.py
2023-02-27 17:07:42 +01:00

207 lines
7.4 KiB
Python

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# input-remapper - GUI for device specific keyboard mappings
# Copyright (C) 2023 sezanzeb <proxima@sezanzeb.de>
#
# This file is part of input-remapper.
#
# input-remapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# input-remapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with input-remapper. If not, see <https://www.gnu.org/licenses/>.
import dataclasses
import functools
import unittest
import itertools
from typing import Iterable, List
from inputremapper.injection.mapping_handlers.axis_transform import Transformation
class TestAxisTransformation(unittest.TestCase):
@dataclasses.dataclass
class InitArgs:
max_: int
min_: int
deadzone: float
gain: float
expo: float
def values(self):
return self.__dict__.values()
def get_init_args(
self,
max_=(255, 1000, 2**15),
min_=(50, 0, -255),
deadzone=(0, 0.5),
gain=(0.5, 1, 2),
expo=(-0.9, 0, 0.3),
) -> Iterable[InitArgs]:
for args in itertools.product(max_, min_, deadzone, gain, expo):
yield self.InitArgs(*args)
@staticmethod
def scale_to_range(min_, max_, x=(-1, -0.2, 0, 0.6, 1)) -> List[float]:
"""Scale values between -1 and 1 up, such that they are between min and max."""
half_range = (max_ - min_) / 2
return [float_x * half_range + min_ + half_range for float_x in x]
def test_scale_to_range(self):
"""Make sure scale_to_range will actually return the min and max values
(avoid "off by one" errors)"""
max_ = (255, 1000, 2**15)
min_ = (50, 0, -255)
for x1, x2 in itertools.product(min_, max_):
scaled = self.scale_to_range(x1, x2, (-1, 1))
self.assertEqual(scaled, [x1, x2])
def test_expo_symmetry(self):
"""Test that the transformation is symmetric for expo parameter
x = f(g(x)), if f._expo == - g._expo
with the following constraints:
min = -1, max = 1
gain = 1
deadzone = 0
we can remove the constraints for min, max and gain,
by scaling the values appropriately after each transformation
"""
for init_args in self.get_init_args(deadzone=(0,)):
f = Transformation(*init_args.values())
init_args.expo = -init_args.expo
g = Transformation(*init_args.values())
scale = functools.partial(
self.scale_to_range,
init_args.min_,
init_args.max_,
)
for x in scale():
y1 = g(x)
y1 = y1 / init_args.gain # remove the gain
y1 = scale((y1,))[0] # remove the min/max constraint
y2 = f(y1)
y2 = y2 / init_args.gain # remove the gain
y2 = scale((y2,))[0] # remove the min/max constraint
self.assertAlmostEqual(x, y2, msg=f"test expo symmetry for {init_args}")
def test_origin_symmetry(self):
"""Test that the transformation is symmetric to the origin_hash
f(x) = - f(-x)
within the constraints: min = -max
"""
for init_args in self.get_init_args():
init_args.min_ = -init_args.max_
f = Transformation(*init_args.values())
for x in self.scale_to_range(init_args.min_, init_args.max_):
self.assertAlmostEqual(
f(x),
-f(-x),
msg=f"test origin_hash symmetry at {x=} for {init_args}",
)
def test_gain(self):
"""Test that f(max) = gain and f(min) = -gain."""
for init_args in self.get_init_args():
f = Transformation(*init_args.values())
self.assertAlmostEqual(
f(init_args.max_),
init_args.gain,
msg=f"test gain for {init_args}",
)
self.assertAlmostEqual(
f(init_args.min_),
-init_args.gain,
msg=f"test gain for {init_args}",
)
def test_deadzone(self):
"""Test the Transfomation returns exactly 0 in the range of the deadzone."""
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
f = Transformation(*init_args.values())
for x in self.scale_to_range(
init_args.min_,
init_args.max_,
x=(
init_args.deadzone * 0.999,
-init_args.deadzone * 0.999,
0.3 * init_args.deadzone,
0,
),
):
self.assertEqual(f(x), 0, msg=f"test deadzone at {x=} for {init_args}")
def test_continuity_near_deadzone(self):
"""Test that the Transfomation is continues (no sudden jump) next to the
deadzone"""
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
f = Transformation(*init_args.values())
scale = functools.partial(
self.scale_to_range,
init_args.min_,
init_args.max_,
)
x = (
init_args.deadzone * 1.00001,
init_args.deadzone * 1.001,
-init_args.deadzone * 1.00001,
-init_args.deadzone * 1.001,
)
scaled_x = scale(x=x)
p1 = (x[0], f(scaled_x[0])) # first point right of deadzone
p2 = (x[1], f(scaled_x[1])) # second point right of deadzone
# calculate a linear function y = m * x + b from p1 and p2
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
b = p1[1] - m * p1[0]
# the zero intersection of that function must be close to the
# edge of the deadzone
self.assertAlmostEqual(
-b / m,
init_args.deadzone,
places=5,
msg=f"test continuity at {init_args.deadzone} for {init_args}",
)
# same thing on the other side
p1 = (x[2], f(scaled_x[2]))
p2 = (x[3], f(scaled_x[3]))
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
b = p1[1] - m * p1[0]
self.assertAlmostEqual(
-b / m,
-init_args.deadzone,
places=5,
msg=f"test continuity at {- init_args.deadzone} for {init_args}",
)
def test_expo_out_of_range(self):
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=1.3)
self.assertRaises(ValueError, f, 0)
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=-1.3)
self.assertRaises(ValueError, f, 0)
def test_returns_one_for_range_between_minus_and_plus_one(self):
for init_args in self.get_init_args(max_=(1,), min_=(-1,), gain=(1,)):
f = Transformation(*init_args.values())
self.assertEqual(f(1), 1)
self.assertEqual(f(-1), -1)