mirror of
https://github.com/sezanzeb/input-remapper
synced 2024-11-12 01:10:38 +00:00
207 lines
7.4 KiB
Python
207 lines
7.4 KiB
Python
#!/usr/bin/python3
|
|
# -*- coding: utf-8 -*-
|
|
# input-remapper - GUI for device specific keyboard mappings
|
|
# Copyright (C) 2023 sezanzeb <proxima@sezanzeb.de>
|
|
#
|
|
# This file is part of input-remapper.
|
|
#
|
|
# input-remapper is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# input-remapper is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with input-remapper. If not, see <https://www.gnu.org/licenses/>.
|
|
import dataclasses
|
|
import functools
|
|
import unittest
|
|
import itertools
|
|
from typing import Iterable, List
|
|
|
|
from inputremapper.injection.mapping_handlers.axis_transform import Transformation
|
|
|
|
|
|
class TestAxisTransformation(unittest.TestCase):
|
|
@dataclasses.dataclass
|
|
class InitArgs:
|
|
max_: int
|
|
min_: int
|
|
deadzone: float
|
|
gain: float
|
|
expo: float
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def get_init_args(
|
|
self,
|
|
max_=(255, 1000, 2**15),
|
|
min_=(50, 0, -255),
|
|
deadzone=(0, 0.5),
|
|
gain=(0.5, 1, 2),
|
|
expo=(-0.9, 0, 0.3),
|
|
) -> Iterable[InitArgs]:
|
|
for args in itertools.product(max_, min_, deadzone, gain, expo):
|
|
yield self.InitArgs(*args)
|
|
|
|
@staticmethod
|
|
def scale_to_range(min_, max_, x=(-1, -0.2, 0, 0.6, 1)) -> List[float]:
|
|
"""Scale values between -1 and 1 up, such that they are between min and max."""
|
|
half_range = (max_ - min_) / 2
|
|
return [float_x * half_range + min_ + half_range for float_x in x]
|
|
|
|
def test_scale_to_range(self):
|
|
"""Make sure scale_to_range will actually return the min and max values
|
|
(avoid "off by one" errors)"""
|
|
max_ = (255, 1000, 2**15)
|
|
min_ = (50, 0, -255)
|
|
|
|
for x1, x2 in itertools.product(min_, max_):
|
|
scaled = self.scale_to_range(x1, x2, (-1, 1))
|
|
self.assertEqual(scaled, [x1, x2])
|
|
|
|
def test_expo_symmetry(self):
|
|
"""Test that the transformation is symmetric for expo parameter
|
|
x = f(g(x)), if f._expo == - g._expo
|
|
|
|
with the following constraints:
|
|
min = -1, max = 1
|
|
gain = 1
|
|
deadzone = 0
|
|
|
|
we can remove the constraints for min, max and gain,
|
|
by scaling the values appropriately after each transformation
|
|
"""
|
|
|
|
for init_args in self.get_init_args(deadzone=(0,)):
|
|
f = Transformation(*init_args.values())
|
|
init_args.expo = -init_args.expo
|
|
g = Transformation(*init_args.values())
|
|
|
|
scale = functools.partial(
|
|
self.scale_to_range,
|
|
init_args.min_,
|
|
init_args.max_,
|
|
)
|
|
for x in scale():
|
|
y1 = g(x)
|
|
y1 = y1 / init_args.gain # remove the gain
|
|
y1 = scale((y1,))[0] # remove the min/max constraint
|
|
|
|
y2 = f(y1)
|
|
y2 = y2 / init_args.gain # remove the gain
|
|
y2 = scale((y2,))[0] # remove the min/max constraint
|
|
self.assertAlmostEqual(x, y2, msg=f"test expo symmetry for {init_args}")
|
|
|
|
def test_origin_symmetry(self):
|
|
"""Test that the transformation is symmetric to the origin_hash
|
|
f(x) = - f(-x)
|
|
within the constraints: min = -max
|
|
"""
|
|
|
|
for init_args in self.get_init_args():
|
|
init_args.min_ = -init_args.max_
|
|
f = Transformation(*init_args.values())
|
|
for x in self.scale_to_range(init_args.min_, init_args.max_):
|
|
self.assertAlmostEqual(
|
|
f(x),
|
|
-f(-x),
|
|
msg=f"test origin_hash symmetry at {x=} for {init_args}",
|
|
)
|
|
|
|
def test_gain(self):
|
|
"""Test that f(max) = gain and f(min) = -gain."""
|
|
for init_args in self.get_init_args():
|
|
f = Transformation(*init_args.values())
|
|
self.assertAlmostEqual(
|
|
f(init_args.max_),
|
|
init_args.gain,
|
|
msg=f"test gain for {init_args}",
|
|
)
|
|
self.assertAlmostEqual(
|
|
f(init_args.min_),
|
|
-init_args.gain,
|
|
msg=f"test gain for {init_args}",
|
|
)
|
|
|
|
def test_deadzone(self):
|
|
"""Test the Transfomation returns exactly 0 in the range of the deadzone."""
|
|
|
|
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
|
|
f = Transformation(*init_args.values())
|
|
for x in self.scale_to_range(
|
|
init_args.min_,
|
|
init_args.max_,
|
|
x=(
|
|
init_args.deadzone * 0.999,
|
|
-init_args.deadzone * 0.999,
|
|
0.3 * init_args.deadzone,
|
|
0,
|
|
),
|
|
):
|
|
self.assertEqual(f(x), 0, msg=f"test deadzone at {x=} for {init_args}")
|
|
|
|
def test_continuity_near_deadzone(self):
|
|
"""Test that the Transfomation is continues (no sudden jump) next to the
|
|
deadzone"""
|
|
|
|
for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)):
|
|
f = Transformation(*init_args.values())
|
|
scale = functools.partial(
|
|
self.scale_to_range,
|
|
init_args.min_,
|
|
init_args.max_,
|
|
)
|
|
x = (
|
|
init_args.deadzone * 1.00001,
|
|
init_args.deadzone * 1.001,
|
|
-init_args.deadzone * 1.00001,
|
|
-init_args.deadzone * 1.001,
|
|
)
|
|
scaled_x = scale(x=x)
|
|
|
|
p1 = (x[0], f(scaled_x[0])) # first point right of deadzone
|
|
p2 = (x[1], f(scaled_x[1])) # second point right of deadzone
|
|
|
|
# calculate a linear function y = m * x + b from p1 and p2
|
|
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
|
|
b = p1[1] - m * p1[0]
|
|
|
|
# the zero intersection of that function must be close to the
|
|
# edge of the deadzone
|
|
self.assertAlmostEqual(
|
|
-b / m,
|
|
init_args.deadzone,
|
|
places=5,
|
|
msg=f"test continuity at {init_args.deadzone} for {init_args}",
|
|
)
|
|
|
|
# same thing on the other side
|
|
p1 = (x[2], f(scaled_x[2]))
|
|
p2 = (x[3], f(scaled_x[3]))
|
|
m = (p1[1] - p2[1]) / (p1[0] - p2[0])
|
|
b = p1[1] - m * p1[0]
|
|
self.assertAlmostEqual(
|
|
-b / m,
|
|
-init_args.deadzone,
|
|
places=5,
|
|
msg=f"test continuity at {- init_args.deadzone} for {init_args}",
|
|
)
|
|
|
|
def test_expo_out_of_range(self):
|
|
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=1.3)
|
|
self.assertRaises(ValueError, f, 0)
|
|
f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=-1.3)
|
|
self.assertRaises(ValueError, f, 0)
|
|
|
|
def test_returns_one_for_range_between_minus_and_plus_one(self):
|
|
for init_args in self.get_init_args(max_=(1,), min_=(-1,), gain=(1,)):
|
|
f = Transformation(*init_args.values())
|
|
self.assertEqual(f(1), 1)
|
|
self.assertEqual(f(-1), -1)
|