You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
input-remapper/keymapper/dev/injector.py

283 lines
9.2 KiB
Python

#!/usr/bin/python3
# -*- coding: utf-8 -*-
# key-mapper - GUI for device specific keyboard mappings
# Copyright (C) 2020 sezanzeb <proxima@hip70890b.de>
#
# This file is part of key-mapper.
#
# key-mapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# key-mapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with key-mapper. If not, see <https://www.gnu.org/licenses/>.
"""Keeps injecting keycodes in the background based on the mapping."""
import re
import asyncio
import time
import subprocess
import multiprocessing
import evdev
from keymapper.logger import logger
from keymapper.getdevices import get_devices
from keymapper.state import custom_mapping, system_mapping
DEV_NAME = 'key-mapper'
DEVICE_CREATED = 1
FAILED = 2
DEVICE_SKIPPED = 3
# offset between xkb and linux keycodes. linux keycodes are lower
KEYCODE_OFFSET = 8
def is_numlock_on():
"""Get the current state of the numlock."""
xset_q = subprocess.check_output(['xset', 'q']).decode()
num_lock_status = re.search(
r'Num Lock:\s+(.+?)\s',
xset_q
)
if num_lock_status is not None:
return num_lock_status[1] == 'on'
return False
def toggle_numlock():
"""Turn the numlock on or off."""
try:
subprocess.check_output(['numlockx', 'toggle'])
except FileNotFoundError:
# doesn't seem to be installed everywhere
logger.debug('numlockx not found, trying to inject a keycode')
# and this doesn't always work.
device = evdev.UInput(
name=f'key-mapper numlock-control',
phys='key-mapper',
)
device.write(evdev.ecodes.EV_KEY, evdev.ecodes.KEY_NUMLOCK, 1)
device.syn()
device.write(evdev.ecodes.EV_KEY, evdev.ecodes.KEY_NUMLOCK, 0)
device.syn()
def ensure_numlock(func):
"""Decorator to reset the numlock to its initial state afterwards."""
def wrapped(*args, **kwargs):
# for some reason, grabbing a device can modify the num lock state.
# remember it and apply back later
numlock_before = is_numlock_on()
result = func(*args, **kwargs)
numlock_after = is_numlock_on()
if numlock_after != numlock_before:
logger.debug('Reverting numlock status to %s', numlock_before)
toggle_numlock()
return result
return wrapped
class KeycodeInjector:
"""Keeps injecting keycodes in the background based on the mapping.
Is a process to make it non-blocking for the rest of the code and to
make running multiple injector easier. There is one procss per
hardware-device that is being mapped.
"""
@ensure_numlock
def __init__(self, device, mapping):
"""Start injecting keycodes based on custom_mapping.
Parameters
----------
device : string
the name of the device as available in get_device
"""
self.device = device
self.mapping = mapping
self._process = None
def start_injecting(self):
"""Start injecting keycodes."""
self._process = multiprocessing.Process(target=self._start_injecting)
self._process.start()
def _prepare_device(self, path):
"""Try to grab the device, return if not needed/possible."""
device = evdev.InputDevice(path)
if device is None:
return None
capabilities = device.capabilities(absinfo=False)[evdev.ecodes.EV_KEY]
needed = False
for keycode, _ in self.mapping:
if keycode - KEYCODE_OFFSET in capabilities:
needed = True
break
if not needed:
# skipping reading and checking on events from those devices
# may be beneficial for performance.
logger.debug('No need to grab %s', device.path)
return None
attempts = 0
while True:
device = evdev.InputDevice(path)
try:
# grab to avoid e.g. the disabled keycode of 10 to confuse
# X, especially when one of the buttons of your mouse also
# uses 10. This also avoids having to load an empty xkb
# symbols file to prevent writing any unwanted keys.
device.grab()
break
except IOError:
attempts += 1
logger.debug('Failed attemt to grab %s %d', path, attempts)
if attempts >= 4:
logger.error('Cannot grab %s, it is possibly in use', path)
return None
# it might take a little time until the device is free if
# it was previously grabbed.
time.sleep(0.15)
return device
def _modify_capabilities(self, input_device):
"""Adds all keycode into a copy of a devices capabilities.
Prameters
---------
input_device : evdev.InputDevice
"""
# copy the capabilities because the keymapper_device is going
# to act like the device.
capabilities = input_device.capabilities(absinfo=False)
# However, make sure that it supports all keycodes, not just some
# random ones, because the mapping could contain anything.
# That's why I avoid from_device for this
capabilities[evdev.ecodes.EV_KEY] = list(evdev.ecodes.keys.keys())
# just like what python-evdev does in from_device
if evdev.ecodes.EV_SYN in capabilities:
del capabilities[evdev.ecodes.EV_SYN]
if evdev.ecodes.EV_FF in capabilities:
del capabilities[evdev.ecodes.EV_FF]
return capabilities
def _start_injecting(self):
"""The injection worker that keeps injecting until terminated.
Stuff is non-blocking by using asyncio in order to do multiple things
somewhat concurrently.
"""
loop = asyncio.get_event_loop()
coroutines = []
paths = get_devices()[self.device]['paths']
logger.info('Starting injecting the mapping for %s', self.device)
# Watch over each one of the potentially multiple devices per hardware
for path in paths:
input_device = self._prepare_device(path)
if input_device is None:
continue
uinput = evdev.UInput(
name=f'key-mapper {input_device.name}',
phys='key-mapper',
events=self._modify_capabilities(input_device)
)
coroutine = self._injection_loop(input_device, uinput)
coroutines.append(coroutine)
if len(coroutines) == 0:
raise OSError('Could not grab any device')
loop.run_until_complete(asyncio.gather(*coroutines))
async def _injection_loop(self, device, keymapper_device):
"""Inject keycodes for one of the virtual devices.
Parameters
----------
device : evdev.InputDevice
where to read keycodes from
keymapper_device : evdev.UInput
where to write keycodes to
mapping : Mapping
to figure out which keycodes to write
"""
logger.debug(
'Started injecting into %s, fd %s',
keymapper_device.device.path, keymapper_device.fd
)
async for event in device.async_read_loop():
if event.type != evdev.ecodes.EV_KEY:
keymapper_device.write(event.type, event.code, event.value)
# this already includes SYN events, so need to syn here again
continue
if event.value == 2:
# linux does them itself, no need to trigger them
continue
input_keycode = event.code + KEYCODE_OFFSET
character = self.mapping.get_character(input_keycode)
if character is None:
# unknown keycode, forward it
target_keycode = input_keycode
else:
target_keycode = system_mapping.get_keycode(character)
if target_keycode is None:
logger.error(
'Cannot find character %s in the internal mapping',
character
)
continue
logger.spam(
'got code:%s value:%s, maps to code:%s char:%s',
event.code + KEYCODE_OFFSET,
event.value,
target_keycode,
character
)
keymapper_device.write(
evdev.ecodes.EV_KEY,
target_keycode - KEYCODE_OFFSET,
event.value
)
keymapper_device.syn()
@ensure_numlock
def stop_injecting(self):
"""Stop injecting keycodes."""
logger.info('Stopping injecting keycodes for device %s', self.device)
if self._process is not None and self._process.is_alive():
self._process.terminate()