#!/usr/bin/python3 # -*- coding: utf-8 -*- # input-remapper - GUI for device specific keyboard mappings # Copyright (C) 2022 sezanzeb # # This file is part of input-remapper. # # input-remapper is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # input-remapper is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with input-remapper. If not, see . import dataclasses import functools import unittest import itertools from typing import Iterable, List from inputremapper.injection.mapping_handlers.axis_transform import Transformation class TestAxisTransformation(unittest.TestCase): @dataclasses.dataclass class InitArgs: max_: int min_: int deadzone: float gain: float expo: float def values(self): return self.__dict__.values() def get_init_args( self, max_=(255, 1000, 2**15), min_=(50, 0, -255), deadzone=(0, 0.5), gain=(0.5, 1, 2), expo=(-0.9, 0, 0.3), ) -> Iterable[InitArgs]: for args in itertools.product(max_, min_, deadzone, gain, expo): yield self.InitArgs(*args) @staticmethod def scale_to_range(min_, max_, x=(-1, -0.2, 0, 0.6, 1)) -> List[float]: """Scale values between -1 and 1 up, such that they are between min and max.""" half_range = (max_ - min_) / 2 return [float_x * half_range + min_ + half_range for float_x in x] def test_scale_to_range(self): """Make sure scale_to_range will actually return the min and max values (avoid "off by one" errors)""" max_ = (255, 1000, 2**15) min_ = (50, 0, -255) for x1, x2 in itertools.product(min_, max_): scaled = self.scale_to_range(x1, x2, (-1, 1)) self.assertEqual(scaled, [x1, x2]) def test_expo_symmetry(self): """Test that the transformation is symmetric for expo parameter x = f(g(x)), if f._expo == - g._expo with the following constraints: min = -1, max = 1 gain = 1 deadzone = 0 we can remove the constraints for min, max and gain, by scaling the values appropriately after each transformation """ for init_args in self.get_init_args(deadzone=(0,)): f = Transformation(*init_args.values()) init_args.expo = -init_args.expo g = Transformation(*init_args.values()) scale = functools.partial( self.scale_to_range, init_args.min_, init_args.max_, ) for x in scale(): y1 = g(x) y1 = y1 / init_args.gain # remove the gain y1 = scale((y1,))[0] # remove the min/max constraint y2 = f(y1) y2 = y2 / init_args.gain # remove the gain y2 = scale((y2,))[0] # remove the min/max constraint self.assertAlmostEqual(x, y2, msg=f"test expo symmetry for {init_args}") def test_origin_symmetry(self): """Test that the transformation is symmetric to the origin f(x) = - f(-x) within the constraints: min = -max """ for init_args in self.get_init_args(): init_args.min_ = -init_args.max_ f = Transformation(*init_args.values()) for x in self.scale_to_range(init_args.min_, init_args.max_): self.assertAlmostEqual( f(x), -f(-x), msg=f"test origin symmetry at {x=} for {init_args}", ) def test_gain(self): """Test that f(max) = gain and f(min) = -gain.""" for init_args in self.get_init_args(): f = Transformation(*init_args.values()) self.assertAlmostEqual( f(init_args.max_), init_args.gain, msg=f"test gain for {init_args}", ) self.assertAlmostEqual( f(init_args.min_), -init_args.gain, msg=f"test gain for {init_args}", ) def test_deadzone(self): """Test the Transfomation returns exactly 0 in the range of the deadzone.""" for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)): f = Transformation(*init_args.values()) for x in self.scale_to_range( init_args.min_, init_args.max_, x=( init_args.deadzone * 0.999, -init_args.deadzone * 0.999, 0.3 * init_args.deadzone, 0, ), ): self.assertEqual(f(x), 0, msg=f"test deadzone at {x=} for {init_args}") def test_continuity_near_deadzone(self): """Test that the Transfomation is continues (no sudden jump) next to the deadzone""" for init_args in self.get_init_args(deadzone=(0.1, 0.2, 0.9)): f = Transformation(*init_args.values()) scale = functools.partial( self.scale_to_range, init_args.min_, init_args.max_, ) x = ( init_args.deadzone * 1.00001, init_args.deadzone * 1.001, -init_args.deadzone * 1.00001, -init_args.deadzone * 1.001, ) scaled_x = scale(x=x) p1 = (x[0], f(scaled_x[0])) # first point right of deadzone p2 = (x[1], f(scaled_x[1])) # second point right of deadzone # calculate a linear function y = m * x + b from p1 and p2 m = (p1[1] - p2[1]) / (p1[0] - p2[0]) b = p1[1] - m * p1[0] # the zero intersection of that function must be close to the # edge of the deadzone self.assertAlmostEqual( -b / m, init_args.deadzone, places=5, msg=f"test continuity at {init_args.deadzone} for {init_args}", ) # same thing on the other side p1 = (x[2], f(scaled_x[2])) p2 = (x[3], f(scaled_x[3])) m = (p1[1] - p2[1]) / (p1[0] - p2[0]) b = p1[1] - m * p1[0] self.assertAlmostEqual( -b / m, -init_args.deadzone, places=5, msg=f"test continuity at {- init_args.deadzone} for {init_args}", ) def test_expo_out_of_range(self): f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=1.3) self.assertRaises(ValueError, f, 0) f = Transformation(deadzone=0.1, min_=-20, max_=5, expo=-1.3) self.assertRaises(ValueError, f, 0) def test_returns_one_for_range_between_minus_and_plus_one(self): for init_args in self.get_init_args(max_=(1,), min_=(-1,), gain=(1,)): f = Transformation(*init_args.values()) self.assertEqual(f(1), 1) self.assertEqual(f(-1), -1)