input-remapper/keymapper/injection/injector.py

441 lines
15 KiB
Python
Raw Normal View History

2020-11-02 20:57:28 +00:00
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# key-mapper - GUI for device specific keyboard mappings
2021-01-02 23:08:33 +00:00
# Copyright (C) 2021 sezanzeb <proxima@hip70890b.de>
2020-11-02 20:57:28 +00:00
#
# This file is part of key-mapper.
#
# key-mapper is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# key-mapper is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with key-mapper. If not, see <https://www.gnu.org/licenses/>.
2020-11-22 12:58:56 +00:00
"""Keeps injecting keycodes in the background based on the mapping."""
2020-11-02 20:57:28 +00:00
import asyncio
import time
2020-11-18 12:17:49 +00:00
import multiprocessing
2020-11-02 20:57:28 +00:00
2020-11-05 00:24:56 +00:00
import evdev
2021-01-05 18:33:47 +00:00
from evdev.ecodes import EV_KEY, EV_REL
2020-11-05 00:24:56 +00:00
2020-11-02 20:57:28 +00:00
from keymapper.logger import logger
2021-01-17 14:09:47 +00:00
from keymapper.getdevices import get_devices, is_gamepad
2021-02-13 19:34:33 +00:00
from keymapper import utils
2021-01-01 13:09:28 +00:00
from keymapper.mapping import DISABLE_CODE
from keymapper.injection.keycode_mapper import KeycodeMapper
from keymapper.injection.context import Context
from keymapper.injection.event_producer import EventProducer
from keymapper.injection.numlock import set_numlock, is_numlock_on, \
ensure_numlock
2020-11-18 19:03:37 +00:00
DEV_NAME = 'key-mapper'
2021-01-07 16:15:12 +00:00
# messages
CLOSE = 0
2021-01-07 16:15:12 +00:00
OK = 1
# states
UNKNOWN = -1
STARTING = 2
FAILED = 3
RUNNING = 4
STOPPED = 5
# for both states and messages
NO_GRAB = 6
2020-12-31 20:46:57 +00:00
def is_in_capabilities(key, capabilities):
2020-12-31 22:16:46 +00:00
"""Are this key or one of its sub keys in the capabilities?
Parameters
----------
key : Key
"""
for sub_key in key:
if sub_key[1] in capabilities.get(sub_key[0], []):
2020-12-31 20:46:57 +00:00
return True
return False
class Injector(multiprocessing.Process):
"""Keeps injecting events in the background based on mapping and config.
2020-11-28 14:43:24 +00:00
Is a process to make it non-blocking for the rest of the code and to
make running multiple injector easier. There is one process per
2020-11-28 14:43:24 +00:00
hardware-device that is being mapped.
"""
2020-12-06 18:54:02 +00:00
regrab_timeout = 0.5
2020-11-28 14:43:24 +00:00
def __init__(self, device, mapping):
"""Setup a process to start injecting keycodes based on custom_mapping.
2020-11-28 14:43:24 +00:00
Parameters
----------
device : string
the name of the device as available in get_device
2020-12-31 20:47:56 +00:00
mapping : Mapping
2020-11-28 14:43:24 +00:00
"""
self.device = device
2021-01-05 18:33:47 +00:00
self._event_producer = None
self._state = UNKNOWN
self._msg_pipe = multiprocessing.Pipe()
self.context = Context(mapping)
super().__init__()
2021-02-14 11:34:56 +00:00
"""Functions to interact with the running process"""
def get_state(self):
"""Get the state of the injection.
Can be safely called from the main process.
"""
# slowly figure out what is going on
alive = self.is_alive()
if self._state == UNKNOWN and not alive:
# didn't start yet
return self._state
# if it is alive, it is definitely at least starting up
if self._state == UNKNOWN and alive:
self._state = STARTING
# if there is a message available, it might have finished starting up
if self._state == STARTING and self._msg_pipe[1].poll():
msg = self._msg_pipe[1].recv()
if msg == OK:
self._state = RUNNING
if msg == NO_GRAB:
self._state = NO_GRAB
if self._state in [STARTING, RUNNING] and not alive:
self._state = FAILED
logger.error('Injector was unexpectedly found stopped')
return self._state
@ensure_numlock
def stop_injecting(self):
"""Stop injecting keycodes.
Can be safely called from the main procss.
"""
logger.info('Stopping injecting keycodes for device "%s"', self.device)
self._msg_pipe[1].send(CLOSE)
self._state = STOPPED
2021-02-14 11:34:56 +00:00
"""Process internal stuff"""
2020-12-01 23:02:41 +00:00
2021-01-17 14:09:47 +00:00
def _grab_device(self, path):
"""Try to grab the device, return None if not needed/possible."""
2020-12-03 19:37:36 +00:00
try:
device = evdev.InputDevice(path)
2021-02-07 14:00:36 +00:00
except (FileNotFoundError, OSError):
2021-01-17 14:09:47 +00:00
logger.error('Could not find "%s"', path)
return None
2020-11-28 14:43:24 +00:00
capabilities = device.capabilities(absinfo=False)
2020-11-28 14:43:24 +00:00
needed = False
for key, _ in self.context.mapping:
2020-12-31 20:46:57 +00:00
if is_in_capabilities(key, capabilities):
2020-12-02 19:48:23 +00:00
needed = True
break
2020-11-30 21:42:53 +00:00
2021-01-17 14:09:47 +00:00
gamepad = is_gamepad(device)
if gamepad and self.context.maps_joystick():
needed = True
2020-11-28 14:43:24 +00:00
if not needed:
# skipping reading and checking on events from those devices
# may be beneficial for performance.
2020-11-29 19:18:00 +00:00
logger.debug('No need to grab %s', path)
2021-01-17 14:09:47 +00:00
return None
2020-11-28 14:43:24 +00:00
attempts = 0
while True:
try:
# grab to avoid e.g. the disabled keycode of 10 to confuse
# X, especially when one of the buttons of your mouse also
# uses 10. This also avoids having to load an empty xkb
# symbols file to prevent writing any unwanted keys.
device.grab()
2020-12-03 19:03:53 +00:00
logger.debug('Grab %s', path)
2020-11-28 14:43:24 +00:00
break
2021-01-07 16:15:12 +00:00
except IOError as error:
2020-11-28 14:43:24 +00:00
attempts += 1
2021-01-07 16:15:12 +00:00
2020-11-30 21:42:53 +00:00
# it might take a little time until the device is free if
# it was previously grabbed.
2021-01-07 16:15:12 +00:00
logger.debug('Failed attempts to grab %s: %d', path, attempts)
2020-11-28 14:43:24 +00:00
2021-01-07 16:15:12 +00:00
if attempts >= 4:
logger.error('Cannot grab %s, it is possibly in use', path)
logger.error(str(error))
2021-01-17 14:09:47 +00:00
return None
2020-11-28 14:43:24 +00:00
2020-12-06 18:54:02 +00:00
time.sleep(self.regrab_timeout)
2020-11-28 14:43:24 +00:00
2021-01-17 14:09:47 +00:00
return device
2020-11-28 14:43:24 +00:00
def _modify_capabilities(self, input_device, gamepad):
2020-12-04 13:38:41 +00:00
"""Adds all used keycodes into a copy of a devices capabilities.
2021-01-07 16:15:12 +00:00
Sometimes capabilities are a bit tricky and change how the system
interprets the device.
2020-11-28 14:43:24 +00:00
2021-01-07 16:15:12 +00:00
Parameters
----------
2020-11-28 14:43:24 +00:00
input_device : evdev.InputDevice
2021-01-17 14:09:47 +00:00
gamepad : bool
2021-02-14 11:34:56 +00:00
If ABS capabilities should be removed in favor of REL.
This parameter is somewhat redundant and could be derived
from input_device, but it is very useful to control this in
tests.
2021-02-07 21:16:41 +00:00
Returns
-------
a mapping of int event type to an array of int event codes.
Without absinfo.
2020-11-28 14:43:24 +00:00
"""
ecodes = evdev.ecodes
# copy the capabilities because the uinput is going
2020-11-28 14:43:24 +00:00
# to act like the device.
2021-02-13 13:11:49 +00:00
capabilities = input_device.capabilities(absinfo=True)
2020-11-30 17:59:34 +00:00
if self.context.writes_keys and capabilities.get(EV_KEY) is None:
capabilities[EV_KEY] = []
2020-11-30 17:59:34 +00:00
2020-12-04 13:38:41 +00:00
# Furthermore, support all injected keycodes
for code in self.context.key_to_code.values():
2021-01-01 13:09:28 +00:00
if code == DISABLE_CODE:
continue
if code not in capabilities[EV_KEY]:
capabilities[EV_KEY].append(code)
2020-12-04 13:38:41 +00:00
# and all keycodes that are injected by macros
for macro in self.context.macros.values():
2020-12-04 13:38:41 +00:00
capabilities[EV_KEY] += list(macro.get_capabilities())
if gamepad and self.context.joystick_as_mouse():
2020-12-27 18:06:17 +00:00
# REL_WHEEL was also required to recognize the gamepad
# as mouse, even if no joystick is used as wheel.
2020-12-03 20:36:15 +00:00
capabilities[EV_REL] = [
evdev.ecodes.REL_X,
evdev.ecodes.REL_Y,
evdev.ecodes.REL_WHEEL,
2020-12-27 18:06:17 +00:00
evdev.ecodes.REL_HWHEEL,
]
2020-12-31 23:57:04 +00:00
if capabilities.get(EV_KEY) is None:
2020-12-27 14:38:08 +00:00
capabilities[EV_KEY] = []
if ecodes.BTN_MOUSE not in capabilities[EV_KEY]:
# to be able to move the cursor, this key capability is
# needed
2020-12-31 22:16:46 +00:00
capabilities[EV_KEY].append(ecodes.BTN_MOUSE)
2020-11-28 14:43:24 +00:00
# just like what python-evdev does in from_device
if ecodes.EV_SYN in capabilities:
del capabilities[ecodes.EV_SYN]
if ecodes.EV_FF in capabilities:
del capabilities[ecodes.EV_FF]
if gamepad and not self.context.forwards_joystick():
2021-02-07 21:16:41 +00:00
# Key input to text inputs and such only works without ABS
2021-01-17 14:09:47 +00:00
# events in the capabilities, possibly due to some intentional
# constraints in wayland/X. So if the joysticks are not used
# as joysticks remove ABS.
del capabilities[ecodes.EV_ABS]
2020-11-28 14:43:24 +00:00
2021-02-07 21:16:41 +00:00
if ecodes.ABS_VOLUME in capabilities.get(ecodes.EV_ABS, []):
# For some reason an ABS_VOLUME capability likes to appear
# for some users. It prevents mice from moving around and
# keyboards from writing characters
capabilities[ecodes.EV_ABS].remove(ecodes.ABS_VOLUME)
2020-11-28 14:43:24 +00:00
return capabilities
2021-01-17 14:09:47 +00:00
async def _msg_listener(self):
"""Wait for messages from the main process to do special stuff."""
2021-01-17 14:09:47 +00:00
loop = asyncio.get_event_loop()
while True:
frame_available = asyncio.Event()
loop.add_reader(self._msg_pipe[0].fileno(), frame_available.set)
await frame_available.wait()
frame_available.clear()
msg = self._msg_pipe[0].recv()
if msg == CLOSE:
logger.debug('Received close signal')
# stop the event loop and cause the process to reach its end
# cleanly. Using .terminate prevents coverage from working.
loop.stop()
return
def run(self):
2020-11-28 14:43:24 +00:00
"""The injection worker that keeps injecting until terminated.
Stuff is non-blocking by using asyncio in order to do multiple things
somewhat concurrently.
Use this function as starting point in a process. It creates
the loops needed to read and map events and keeps running them.
2020-11-28 14:43:24 +00:00
"""
if self.device not in get_devices():
logger.error('Cannot inject for unknown device "%s"', self.device)
return
logger.info('Starting injecting the mapping for "%s"', self.device)
# create a new event loop, because somehow running an infinite loop
2021-01-05 18:33:47 +00:00
# that sleeps on iterations (event_producer) in one process causes
# another injection process to screw up reading from the grabbed
# device.
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
self._event_producer = EventProducer(self.context)
2020-12-16 11:57:09 +00:00
numlock_state = is_numlock_on()
2020-11-28 14:43:24 +00:00
coroutines = []
2020-11-18 19:03:37 +00:00
# Watch over each one of the potentially multiple devices per hardware
for path in get_devices()[self.device]['paths']:
2021-01-17 14:09:47 +00:00
source = self._grab_device(path)
2020-12-04 13:38:41 +00:00
if source is None:
2021-01-05 18:33:47 +00:00
# this path doesn't need to be grabbed for injection, because
# it doesn't provide the events needed to execute the mapping
2020-11-28 14:43:24 +00:00
continue
2021-02-13 11:44:50 +00:00
logger.spam(
'Original capabilities for "%s": %s',
path, source.capabilities(verbose=True)
)
# certain capabilities can have side effects apparently. with an
# EV_ABS capability, EV_REL won't move the mouse pointer anymore.
# so don't merge all InputDevices into one UInput device.
2021-01-17 14:09:47 +00:00
gamepad = is_gamepad(source)
2020-11-28 14:43:24 +00:00
uinput = evdev.UInput(
name=f'{DEV_NAME} {self.device}',
phys=DEV_NAME,
events=self._modify_capabilities(source, gamepad)
2020-11-18 19:03:37 +00:00
)
2020-12-06 18:08:09 +00:00
logger.spam(
'Injected capabilities for "%s": %s',
path, uinput.capabilities(verbose=True)
)
# actual reading of events
coroutines.append(self._event_consumer(source, uinput))
2021-01-05 18:33:47 +00:00
# The event source of the current iteration will deliver events
# that are needed for this. It is that one that will be mapped
# to a mouse-like devnode.
if gamepad and self.context.joystick_as_mouse():
2021-01-05 18:33:47 +00:00
self._event_producer.set_max_abs_from(source)
self._event_producer.set_mouse_uinput(uinput)
2020-11-30 21:42:53 +00:00
2020-11-28 14:43:24 +00:00
if len(coroutines) == 0:
2020-11-30 21:42:53 +00:00
logger.error('Did not grab any device')
2021-01-07 16:15:12 +00:00
self._msg_pipe[0].send(NO_GRAB)
2020-11-30 21:42:53 +00:00
return
2020-11-18 19:03:37 +00:00
2021-01-17 14:09:47 +00:00
coroutines.append(self._msg_listener())
2021-01-07 16:15:12 +00:00
# run besides this stuff
coroutines.append(self._event_producer.run())
2020-12-16 11:57:09 +00:00
# set the numlock state to what it was before injecting, because
# grabbing devices screws this up
set_numlock(numlock_state)
2021-01-07 16:15:12 +00:00
self._msg_pipe[0].send(OK)
2021-01-05 18:33:47 +00:00
try:
loop.run_until_complete(asyncio.gather(*coroutines))
except RuntimeError:
# stopped event loop most likely
pass
except OSError as error:
logger.error(str(error))
2020-11-28 14:43:24 +00:00
2020-11-30 21:42:53 +00:00
if len(coroutines) > 0:
2021-01-07 16:15:12 +00:00
# expected when stop_injecting is called,
# during normal operation as well as tests this point is not
# reached otherwise.
2020-11-30 21:42:53 +00:00
logger.debug('asyncio coroutines ended')
async def _event_consumer(self, source, uinput):
2021-01-05 18:33:47 +00:00
"""Reads input events to inject keycodes or talk to the event_producer.
2020-11-28 14:43:24 +00:00
2021-01-05 18:33:47 +00:00
Can be stopped by stopping the asyncio loop. This loop
reads events from a single device only. Other devnodes may be
present for the hardware device, in which case this needs to be
started multiple times.
2020-12-02 15:17:52 +00:00
2020-11-28 14:43:24 +00:00
Parameters
----------
2020-12-04 13:38:41 +00:00
source : evdev.InputDevice
2020-11-28 14:43:24 +00:00
where to read keycodes from
uinput : evdev.UInput
2020-11-28 14:43:24 +00:00
where to write keycodes to
"""
logger.debug(
2021-01-05 18:33:47 +00:00
'Started consumer to inject to %s, fd %s',
source.path, source.fd
2020-11-28 14:43:24 +00:00
)
keycode_handler = KeycodeMapper(self.context, source, uinput)
2020-12-04 13:38:41 +00:00
async for event in source.async_read_loop():
2021-01-05 18:33:47 +00:00
if self._event_producer.is_handled(event):
# the event_producer will take care of it
self._event_producer.notify(event)
continue
# for mapped stuff
if utils.should_map_event_as_btn(event, self.context.mapping):
2021-01-05 18:33:47 +00:00
will_report_key_up = utils.will_report_key_up(event)
keycode_handler.handle_keycode(event)
2021-01-01 21:20:33 +00:00
2021-01-05 18:33:47 +00:00
if not will_report_key_up:
# simulate a key-up event if no down event arrives anymore.
# this may release macros, combinations or keycodes.
release = evdev.InputEvent(0, 0, event.type, event.code, 0)
self._event_producer.debounce(
debounce_id=(event.type, event.code, event.value),
func=keycode_handler.handle_keycode,
args=(release, False),
2021-01-05 18:33:47 +00:00
ticks=3,
)
continue
2020-12-02 19:48:23 +00:00
# forward the rest
uinput.write(event.type, event.code, event.value)
# this already includes SYN events, so need to syn here again
2020-11-28 14:43:24 +00:00
2021-02-14 11:34:56 +00:00
logger.error('The consumer for "%s" stopped early', source.path)