mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
69 lines
2.0 KiB
Python
69 lines
2.0 KiB
Python
from functools import lru_cache
|
|
from typing import Sequence
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from torch import nn
|
|
|
|
from imaginairy.vendored import clip
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
@lru_cache
|
|
def get_model():
|
|
model_name = "ViT-L/14"
|
|
model, preprocess = clip.load(model_name, device=device)
|
|
return model, preprocess
|
|
|
|
|
|
def find_img_text_similarity(image: Image.Image, phrases: Sequence):
|
|
"""Find the likelihood of a list of textual concepts existing in the image."""
|
|
|
|
model, preprocess = get_model()
|
|
image = preprocess(image).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
|
image_features = model.encode_image(image)
|
|
|
|
return find_embed_text_similarity(image_features, phrases)
|
|
|
|
|
|
def find_embed_text_similarity(embed_features, phrases):
|
|
model, _ = get_model()
|
|
text = clip.tokenize(phrases).to(device)
|
|
|
|
with torch.no_grad():
|
|
text_features = model.encode_text(text)
|
|
|
|
probs = cosine_distance(text_features, embed_features)
|
|
probs = [float(p) for p in probs.squeeze(dim=0)]
|
|
phrase_probs = list(zip(phrases, probs))
|
|
phrase_probs.sort(key=lambda r: r[1], reverse=True)
|
|
|
|
return phrase_probs
|
|
|
|
|
|
def rank(image_features, text_features, top_count=100):
|
|
similarity = torch.zeros((1, text_features.shape[0])).to(device)
|
|
for i in range(image_features.shape[0]):
|
|
similarity += (
|
|
100.0 * image_features[i].unsqueeze(0) @ text_features.T
|
|
).softmax(dim=-1)
|
|
similarity /= image_features.shape[0]
|
|
|
|
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
|
|
phrase_scores = [
|
|
(top_labels[0][i].numpy(), (top_probs[0][i].numpy() * 100))
|
|
for i in range(top_count)
|
|
]
|
|
phrase_scores = [(p, s) for p, s in phrase_scores if s > 0.0001]
|
|
phrase_scores.sort(key=lambda ps: ps[1], reverse=True)
|
|
return phrase_scores
|
|
|
|
|
|
def cosine_distance(embeds_a, embeds_b):
|
|
embeds_a = nn.functional.normalize(embeds_a)
|
|
embeds_b = nn.functional.normalize(embeds_b)
|
|
return torch.mm(embeds_a, embeds_b.t())
|