imaginAIry/imaginairy/cli/shared.py

506 lines
15 KiB
Python

import logging
import math
from contextlib import contextmanager
import click
from imaginairy import config
logger = logging.getLogger(__name__)
@contextmanager
def imaginairy_click_context(log_level="INFO"):
from pydantic import ValidationError
from imaginairy.log_utils import configure_logging
errors_to_catch = (FileNotFoundError, ValidationError, ValueError)
configure_logging(level=log_level)
try:
yield
except errors_to_catch as e:
logger.error(e)
def _imagine_cmd(
ctx,
prompt_texts,
negative_prompt,
prompt_strength,
init_image,
init_image_strength,
outdir,
output_file_extension,
repeats,
size,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
solver,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
allow_compose_phase,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_architecture,
prompt_library_path,
version=False,
make_gif=False,
make_compare_gif=False,
arg_schedules=None,
make_compilation_animation=False,
caption_text="",
control_inputs=None,
videogen=False,
):
"""Have the AI generate images. alias:imagine."""
if ctx.invoked_subcommand is not None:
return
if version:
from imaginairy.version import get_version
print(get_version())
return
if quiet:
log_level = "ERROR"
import sys
if len(sys.argv) > 1:
msg = (
"✨ Generate images faster using a persistent shell session. Just run `aimg` to start. "
"This makes generation and editing much quicker since the model can stay loaded in memory.\n"
)
print(msg)
from imaginairy.log_utils import configure_logging
configure_logging(log_level)
init_images = [init_image] if isinstance(init_image, str) else init_image
from imaginairy.utils import glob_expand_paths
num_prexpaned_init_images = len(init_images)
init_images = glob_expand_paths(init_images)
if len(init_images) < num_prexpaned_init_images:
msg = f"Could not find any images matching the glob pattern(s) {init_image}. Are you sure the file(s) exists?"
raise ValueError(msg)
total_image_count = len(prompt_texts) * max(len(init_images), 1) * repeats
logger.info(
f"Received {len(prompt_texts)} prompt(s) and {len(init_images)} input image(s). Will repeat the generations {repeats} times to create {total_image_count} images."
)
from imaginairy.api import imagine_image_files
from imaginairy.schema import ImaginePrompt, LazyLoadingImage
new_init_images = []
for _init_image in init_images:
if _init_image and _init_image.startswith("http"):
_init_image = LazyLoadingImage(url=_init_image)
else:
_init_image = LazyLoadingImage(filepath=_init_image)
new_init_images.append(_init_image)
init_images = new_init_images
if not init_images:
init_images = [None]
if mask_image:
if mask_image.startswith("http"):
mask_image = LazyLoadingImage(url=mask_image)
else:
mask_image = LazyLoadingImage(filepath=mask_image)
prompts = []
prompt_expanding_iterators = {}
from imaginairy.enhancers.prompt_expansion import expand_prompts
if model_weights_path.lower() not in config.MODEL_WEIGHT_CONFIG_LOOKUP:
model_weights_path = config.ModelWeightsConfig(
name="custom weights",
aliases=["custom"],
weights_location=model_weights_path,
architecture=model_architecture,
defaults={"negative_prompt": config.DEFAULT_NEGATIVE_PROMPT},
)
for _ in range(repeats):
for prompt_text in prompt_texts:
if prompt_text not in prompt_expanding_iterators:
prompt_expanding_iterators[prompt_text] = expand_prompts(
n=math.inf,
prompt_text=prompt_text,
prompt_library_paths=prompt_library_path,
)
prompt_iterator = prompt_expanding_iterators[prompt_text]
if tile:
_tile_mode = "xy"
elif tile_x:
_tile_mode = "x"
elif tile_y:
_tile_mode = "y"
else:
_tile_mode = ""
for _init_image in init_images:
prompt = ImaginePrompt(
prompt=next(prompt_iterator),
negative_prompt=negative_prompt,
prompt_strength=prompt_strength,
init_image=_init_image,
init_image_strength=init_image_strength,
control_inputs=control_inputs,
seed=seed,
solver_type=solver,
steps=steps,
size=size,
mask_image=mask_image,
mask_prompt=mask_prompt,
mask_mode=mask_mode,
mask_modify_original=mask_modify_original,
outpaint=outpaint,
upscale=upscale,
fix_faces=fix_faces,
fix_faces_fidelity=fix_faces_fidelity,
tile_mode=_tile_mode,
allow_compose_phase=allow_compose_phase,
model_weights=model_weights_path,
caption_text=caption_text,
)
from imaginairy.prompt_schedules import (
parse_schedule_strs,
prompt_mutator,
)
if arg_schedules:
schedules = parse_schedule_strs(arg_schedules)
for new_prompt in prompt_mutator(prompt, schedules):
prompts.append(new_prompt)
else:
prompts.append(prompt)
filenames = imagine_image_files(
prompts,
outdir=outdir,
record_step_images=show_work,
output_file_extension=output_file_extension,
print_caption=caption,
precision=precision,
make_gif=make_gif,
make_compare_gif=make_compare_gif,
videogen=videogen,
)
if make_compilation_animation:
import os.path
ext = make_compilation_animation
compilation_outdir = os.path.join(outdir, "compilations")
os.makedirs(compilation_outdir, exist_ok=True)
base_count = len(os.listdir(compilation_outdir))
new_filename = os.path.join(
compilation_outdir, f"{base_count:04d}_compilation.{ext}"
)
comp_imgs = [LazyLoadingImage(filepath=f) for f in filenames]
comp_imgs.reverse()
from imaginairy.animations import make_slideshow_animation
make_slideshow_animation(
outpath=new_filename,
imgs=comp_imgs,
image_pause_ms=1000,
)
logger.info(f"[compilation] saved to: {new_filename}")
def add_options(options):
def _add_options(func):
for option in reversed(options):
func = option(func)
return func
return _add_options
def replace_option(options, option_name, new_option):
for i, option in enumerate(options):
if option.name == option_name:
options[i] = new_option
return
msg = f"Option {option_name} not found"
raise ValueError(msg)
def remove_option(options, option_name):
for i, option_dec in enumerate(options):
def temp_f():
return True
temp_f = option_dec(temp_f)
option = temp_f.__click_params__[0]
if option.name == option_name:
del options[i]
return
msg = f"Option {option_name} not found"
raise ValueError(msg)
common_options = [
click.option(
"--negative-prompt",
default=None,
show_default=False,
help="Negative prompt. Things to try and exclude from images. Same negative prompt will be used for all images.",
),
click.option(
"--prompt-strength",
default=7.5,
show_default=True,
help="How closely to follow the prompt. Image looks unnatural at higher values",
),
click.option(
"--init-image",
metavar="PATH|URL",
help="Starting image.",
multiple=True,
),
click.option(
"--init-image-strength",
default=None,
show_default=False,
type=float,
help="Starting image strength. Between 0 and 1.",
),
click.option(
"--outdir",
default="./outputs",
show_default=True,
type=click.Path(),
help="Where to write results to.",
),
click.option(
"--output-file-extension",
default="jpg",
show_default=True,
type=click.Choice(["jpg", "png"]),
help="Where to write results to.",
),
click.option(
"-r",
"--repeats",
default=1,
show_default=True,
type=int,
help="How many times to repeat the renders. If you provide two prompts and --repeat=3 then six images will be generated.",
),
click.option(
"--size",
default=None,
show_default=True,
type=str,
help="Image size as a string. Can be a named size, WIDTHxHEIGHT, or single integer. Should be multiple of 8. Examples: 512x512, 4k, UHD, 8k, 512, 1080p",
),
click.option(
"--steps",
default=None,
type=int,
show_default=True,
help="How many diffusion steps to run. More steps, more detail, but with diminishing returns.",
),
click.option(
"--seed",
default=None,
type=int,
help="What seed to use for randomness. Allows reproducible image renders.",
),
click.option("--upscale", is_flag=True),
click.option("--fix-faces", is_flag=True),
click.option(
"--fix-faces-fidelity",
default=None,
type=float,
help="How faithful to the original should face enhancement be. 1 = best fidelity, 0 = best looking face.",
),
click.option(
"--solver",
"--sampler",
default=config.DEFAULT_SOLVER,
show_default=True,
type=click.Choice(config.SOLVER_TYPE_NAMES, case_sensitive=False),
help="Solver algorithm to generate the image with. (AKA 'Sampler' or 'Scheduler' in other libraries.",
),
click.option(
"--log-level",
default="INFO",
show_default=True,
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"], case_sensitive=False),
help="What level of logs to show.",
),
click.option(
"--quiet",
"-q",
is_flag=True,
help="Suppress logs. Alias of `--log-level ERROR`.",
),
click.option(
"--show-work",
default=False,
is_flag=True,
help="Output a debug images to `steps` folder.",
),
click.option(
"--tile",
is_flag=True,
help="Any images rendered will be tileable in both X and Y directions.",
),
click.option(
"--tile-x",
is_flag=True,
help="Any images rendered will be tileable in the X direction.",
),
click.option(
"--tile-y",
is_flag=True,
help="Any images rendered will be tileable in the Y direction.",
),
click.option(
"--allow-compose-phase/--no-compose-phase",
default=True,
help="Allow the image to be composed at a lower resolution.",
),
click.option(
"--mask-image",
metavar="PATH|URL",
help="A mask to use for inpainting. White gets painted, Black is left alone.",
),
click.option(
"--mask-prompt",
help=(
"Describe what you want masked and the AI will mask it for you. "
"You can describe complex masks with AND, OR, NOT keywords and parentheses. "
"The strength of each mask can be modified with {*1.5} notation. \n\n"
"Examples: \n"
"car AND (wheels{*1.1} OR trunk OR engine OR windows OR headlights) AND NOT (truck OR headlights){*10}\n"
"fruit|fruit stem"
),
),
click.option(
"--mask-mode",
default="replace",
show_default=True,
type=click.Choice(["keep", "replace"], case_sensitive=False),
help="Should we replace the masked area or keep it?",
),
click.option(
"--mask-modify-original",
default=True,
is_flag=True,
help="After the inpainting is done, apply the changes to a copy of the original image.",
),
click.option(
"--outpaint",
help=(
"Specify in what directions to expand the image. Values will be snapped such that output image size is multiples of 8. Examples\n"
" `--outpaint up10,down300,left50,right50`\n"
" `--outpaint u10,d300,l50,r50`\n"
" `--outpaint all200`\n"
" `--outpaint a200`\n"
),
default="",
),
click.option(
"--caption",
default=False,
is_flag=True,
help="Generate a text description of the generated image.",
),
click.option(
"--precision",
help="Evaluate at this precision.",
type=click.Choice(["full", "autocast"], case_sensitive=False),
default="autocast",
show_default=True,
),
click.option(
"--model-weights-path",
"--model",
help=f"Model to use. Should be one of {', '.join(config.IMAGE_WEIGHTS_SHORT_NAMES)}, or a path to custom weights.",
show_default=True,
default=config.DEFAULT_MODEL_WEIGHTS,
),
click.option(
"--model-architecture",
help="Model architecture. When specifying custom weights the model architecture must be specified. (sd15, sdxl, etc).",
show_default=True,
default=None,
),
click.option(
"--prompt-library-path",
help="Path to folder containing phrase lists in txt files. Use txt filename in prompt: {_filename_}.",
type=click.Path(exists=True),
default=None,
multiple=True,
),
click.option(
"--version",
default=False,
is_flag=True,
help="Print the version and exit.",
),
click.option(
"--gif",
"make_gif",
default=False,
is_flag=True,
help="Create a gif of the generation.",
),
click.option(
"--compare-gif",
"make_compare_gif",
default=False,
is_flag=True,
help="Create a gif comparing the original image to the modified one.",
),
click.option(
"--arg-schedule",
"arg_schedules",
multiple=True,
help="Schedule how an argument should change over several generations. Format: `--arg-schedule arg_name[start:end:increment]` or `--arg-schedule arg_name[val,val2,val3]`",
),
click.option(
"--compilation-anim",
"make_compilation_animation",
default=None,
type=click.Choice(["gif", "mp4"]),
help="Generate an animation composed of all the images generated in this run. Defaults to gif but `--compilation-anim mp4` will generate an mp4 instead.",
),
click.option(
"--caption-text",
"caption_text",
default=None,
help="Specify the text to write onto the image",
type=str,
),
]