mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-17 09:25:47 +00:00
506 lines
15 KiB
Python
506 lines
15 KiB
Python
import logging
|
|
import math
|
|
from contextlib import contextmanager
|
|
|
|
import click
|
|
|
|
from imaginairy import config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@contextmanager
|
|
def imaginairy_click_context(log_level="INFO"):
|
|
from pydantic import ValidationError
|
|
|
|
from imaginairy.log_utils import configure_logging
|
|
|
|
errors_to_catch = (FileNotFoundError, ValidationError, ValueError)
|
|
configure_logging(level=log_level)
|
|
try:
|
|
yield
|
|
except errors_to_catch as e:
|
|
logger.error(e)
|
|
|
|
|
|
def _imagine_cmd(
|
|
ctx,
|
|
prompt_texts,
|
|
negative_prompt,
|
|
prompt_strength,
|
|
init_image,
|
|
init_image_strength,
|
|
outdir,
|
|
output_file_extension,
|
|
repeats,
|
|
size,
|
|
steps,
|
|
seed,
|
|
upscale,
|
|
fix_faces,
|
|
fix_faces_fidelity,
|
|
solver,
|
|
log_level,
|
|
quiet,
|
|
show_work,
|
|
tile,
|
|
tile_x,
|
|
tile_y,
|
|
allow_compose_phase,
|
|
mask_image,
|
|
mask_prompt,
|
|
mask_mode,
|
|
mask_modify_original,
|
|
outpaint,
|
|
caption,
|
|
precision,
|
|
model_weights_path,
|
|
model_architecture,
|
|
prompt_library_path,
|
|
version=False,
|
|
make_gif=False,
|
|
make_compare_gif=False,
|
|
arg_schedules=None,
|
|
make_compilation_animation=False,
|
|
caption_text="",
|
|
control_inputs=None,
|
|
videogen=False,
|
|
):
|
|
"""Have the AI generate images. alias:imagine."""
|
|
|
|
if ctx.invoked_subcommand is not None:
|
|
return
|
|
|
|
if version:
|
|
from imaginairy.version import get_version
|
|
|
|
print(get_version())
|
|
return
|
|
|
|
if quiet:
|
|
log_level = "ERROR"
|
|
|
|
import sys
|
|
|
|
if len(sys.argv) > 1:
|
|
msg = (
|
|
"✨ Generate images faster using a persistent shell session. Just run `aimg` to start. "
|
|
"This makes generation and editing much quicker since the model can stay loaded in memory.\n"
|
|
)
|
|
print(msg)
|
|
|
|
from imaginairy.log_utils import configure_logging
|
|
|
|
configure_logging(log_level)
|
|
|
|
init_images = [init_image] if isinstance(init_image, str) else init_image
|
|
|
|
from imaginairy.utils import glob_expand_paths
|
|
|
|
num_prexpaned_init_images = len(init_images)
|
|
init_images = glob_expand_paths(init_images)
|
|
|
|
if len(init_images) < num_prexpaned_init_images:
|
|
msg = f"Could not find any images matching the glob pattern(s) {init_image}. Are you sure the file(s) exists?"
|
|
raise ValueError(msg)
|
|
|
|
total_image_count = len(prompt_texts) * max(len(init_images), 1) * repeats
|
|
logger.info(
|
|
f"Received {len(prompt_texts)} prompt(s) and {len(init_images)} input image(s). Will repeat the generations {repeats} times to create {total_image_count} images."
|
|
)
|
|
|
|
from imaginairy.api import imagine_image_files
|
|
from imaginairy.schema import ImaginePrompt, LazyLoadingImage
|
|
|
|
new_init_images = []
|
|
for _init_image in init_images:
|
|
if _init_image and _init_image.startswith("http"):
|
|
_init_image = LazyLoadingImage(url=_init_image)
|
|
else:
|
|
_init_image = LazyLoadingImage(filepath=_init_image)
|
|
new_init_images.append(_init_image)
|
|
init_images = new_init_images
|
|
if not init_images:
|
|
init_images = [None]
|
|
|
|
if mask_image:
|
|
if mask_image.startswith("http"):
|
|
mask_image = LazyLoadingImage(url=mask_image)
|
|
else:
|
|
mask_image = LazyLoadingImage(filepath=mask_image)
|
|
|
|
prompts = []
|
|
prompt_expanding_iterators = {}
|
|
from imaginairy.enhancers.prompt_expansion import expand_prompts
|
|
|
|
if model_weights_path.lower() not in config.MODEL_WEIGHT_CONFIG_LOOKUP:
|
|
model_weights_path = config.ModelWeightsConfig(
|
|
name="custom weights",
|
|
aliases=["custom"],
|
|
weights_location=model_weights_path,
|
|
architecture=model_architecture,
|
|
defaults={"negative_prompt": config.DEFAULT_NEGATIVE_PROMPT},
|
|
)
|
|
|
|
for _ in range(repeats):
|
|
for prompt_text in prompt_texts:
|
|
if prompt_text not in prompt_expanding_iterators:
|
|
prompt_expanding_iterators[prompt_text] = expand_prompts(
|
|
n=math.inf,
|
|
prompt_text=prompt_text,
|
|
prompt_library_paths=prompt_library_path,
|
|
)
|
|
prompt_iterator = prompt_expanding_iterators[prompt_text]
|
|
if tile:
|
|
_tile_mode = "xy"
|
|
elif tile_x:
|
|
_tile_mode = "x"
|
|
elif tile_y:
|
|
_tile_mode = "y"
|
|
else:
|
|
_tile_mode = ""
|
|
|
|
for _init_image in init_images:
|
|
prompt = ImaginePrompt(
|
|
prompt=next(prompt_iterator),
|
|
negative_prompt=negative_prompt,
|
|
prompt_strength=prompt_strength,
|
|
init_image=_init_image,
|
|
init_image_strength=init_image_strength,
|
|
control_inputs=control_inputs,
|
|
seed=seed,
|
|
solver_type=solver,
|
|
steps=steps,
|
|
size=size,
|
|
mask_image=mask_image,
|
|
mask_prompt=mask_prompt,
|
|
mask_mode=mask_mode,
|
|
mask_modify_original=mask_modify_original,
|
|
outpaint=outpaint,
|
|
upscale=upscale,
|
|
fix_faces=fix_faces,
|
|
fix_faces_fidelity=fix_faces_fidelity,
|
|
tile_mode=_tile_mode,
|
|
allow_compose_phase=allow_compose_phase,
|
|
model_weights=model_weights_path,
|
|
caption_text=caption_text,
|
|
)
|
|
from imaginairy.prompt_schedules import (
|
|
parse_schedule_strs,
|
|
prompt_mutator,
|
|
)
|
|
|
|
if arg_schedules:
|
|
schedules = parse_schedule_strs(arg_schedules)
|
|
for new_prompt in prompt_mutator(prompt, schedules):
|
|
prompts.append(new_prompt)
|
|
else:
|
|
prompts.append(prompt)
|
|
|
|
filenames = imagine_image_files(
|
|
prompts,
|
|
outdir=outdir,
|
|
record_step_images=show_work,
|
|
output_file_extension=output_file_extension,
|
|
print_caption=caption,
|
|
precision=precision,
|
|
make_gif=make_gif,
|
|
make_compare_gif=make_compare_gif,
|
|
videogen=videogen,
|
|
)
|
|
if make_compilation_animation:
|
|
import os.path
|
|
|
|
ext = make_compilation_animation
|
|
|
|
compilation_outdir = os.path.join(outdir, "compilations")
|
|
os.makedirs(compilation_outdir, exist_ok=True)
|
|
base_count = len(os.listdir(compilation_outdir))
|
|
new_filename = os.path.join(
|
|
compilation_outdir, f"{base_count:04d}_compilation.{ext}"
|
|
)
|
|
comp_imgs = [LazyLoadingImage(filepath=f) for f in filenames]
|
|
comp_imgs.reverse()
|
|
|
|
from imaginairy.animations import make_slideshow_animation
|
|
|
|
make_slideshow_animation(
|
|
outpath=new_filename,
|
|
imgs=comp_imgs,
|
|
image_pause_ms=1000,
|
|
)
|
|
logger.info(f"[compilation] saved to: {new_filename}")
|
|
|
|
|
|
def add_options(options):
|
|
def _add_options(func):
|
|
for option in reversed(options):
|
|
func = option(func)
|
|
return func
|
|
|
|
return _add_options
|
|
|
|
|
|
def replace_option(options, option_name, new_option):
|
|
for i, option in enumerate(options):
|
|
if option.name == option_name:
|
|
options[i] = new_option
|
|
return
|
|
msg = f"Option {option_name} not found"
|
|
raise ValueError(msg)
|
|
|
|
|
|
def remove_option(options, option_name):
|
|
for i, option_dec in enumerate(options):
|
|
|
|
def temp_f():
|
|
return True
|
|
|
|
temp_f = option_dec(temp_f)
|
|
option = temp_f.__click_params__[0]
|
|
|
|
if option.name == option_name:
|
|
del options[i]
|
|
return
|
|
msg = f"Option {option_name} not found"
|
|
raise ValueError(msg)
|
|
|
|
|
|
common_options = [
|
|
click.option(
|
|
"--negative-prompt",
|
|
default=None,
|
|
show_default=False,
|
|
help="Negative prompt. Things to try and exclude from images. Same negative prompt will be used for all images.",
|
|
),
|
|
click.option(
|
|
"--prompt-strength",
|
|
default=7.5,
|
|
show_default=True,
|
|
help="How closely to follow the prompt. Image looks unnatural at higher values",
|
|
),
|
|
click.option(
|
|
"--init-image",
|
|
metavar="PATH|URL",
|
|
help="Starting image.",
|
|
multiple=True,
|
|
),
|
|
click.option(
|
|
"--init-image-strength",
|
|
default=None,
|
|
show_default=False,
|
|
type=float,
|
|
help="Starting image strength. Between 0 and 1.",
|
|
),
|
|
click.option(
|
|
"--outdir",
|
|
default="./outputs",
|
|
show_default=True,
|
|
type=click.Path(),
|
|
help="Where to write results to.",
|
|
),
|
|
click.option(
|
|
"--output-file-extension",
|
|
default="jpg",
|
|
show_default=True,
|
|
type=click.Choice(["jpg", "png"]),
|
|
help="Where to write results to.",
|
|
),
|
|
click.option(
|
|
"-r",
|
|
"--repeats",
|
|
default=1,
|
|
show_default=True,
|
|
type=int,
|
|
help="How many times to repeat the renders. If you provide two prompts and --repeat=3 then six images will be generated.",
|
|
),
|
|
click.option(
|
|
"--size",
|
|
default=None,
|
|
show_default=True,
|
|
type=str,
|
|
help="Image size as a string. Can be a named size, WIDTHxHEIGHT, or single integer. Should be multiple of 8. Examples: 512x512, 4k, UHD, 8k, 512, 1080p",
|
|
),
|
|
click.option(
|
|
"--steps",
|
|
default=None,
|
|
type=int,
|
|
show_default=True,
|
|
help="How many diffusion steps to run. More steps, more detail, but with diminishing returns.",
|
|
),
|
|
click.option(
|
|
"--seed",
|
|
default=None,
|
|
type=int,
|
|
help="What seed to use for randomness. Allows reproducible image renders.",
|
|
),
|
|
click.option("--upscale", is_flag=True),
|
|
click.option("--fix-faces", is_flag=True),
|
|
click.option(
|
|
"--fix-faces-fidelity",
|
|
default=None,
|
|
type=float,
|
|
help="How faithful to the original should face enhancement be. 1 = best fidelity, 0 = best looking face.",
|
|
),
|
|
click.option(
|
|
"--solver",
|
|
"--sampler",
|
|
default=config.DEFAULT_SOLVER,
|
|
show_default=True,
|
|
type=click.Choice(config.SOLVER_TYPE_NAMES, case_sensitive=False),
|
|
help="Solver algorithm to generate the image with. (AKA 'Sampler' or 'Scheduler' in other libraries.",
|
|
),
|
|
click.option(
|
|
"--log-level",
|
|
default="INFO",
|
|
show_default=True,
|
|
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"], case_sensitive=False),
|
|
help="What level of logs to show.",
|
|
),
|
|
click.option(
|
|
"--quiet",
|
|
"-q",
|
|
is_flag=True,
|
|
help="Suppress logs. Alias of `--log-level ERROR`.",
|
|
),
|
|
click.option(
|
|
"--show-work",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Output a debug images to `steps` folder.",
|
|
),
|
|
click.option(
|
|
"--tile",
|
|
is_flag=True,
|
|
help="Any images rendered will be tileable in both X and Y directions.",
|
|
),
|
|
click.option(
|
|
"--tile-x",
|
|
is_flag=True,
|
|
help="Any images rendered will be tileable in the X direction.",
|
|
),
|
|
click.option(
|
|
"--tile-y",
|
|
is_flag=True,
|
|
help="Any images rendered will be tileable in the Y direction.",
|
|
),
|
|
click.option(
|
|
"--allow-compose-phase/--no-compose-phase",
|
|
default=True,
|
|
help="Allow the image to be composed at a lower resolution.",
|
|
),
|
|
click.option(
|
|
"--mask-image",
|
|
metavar="PATH|URL",
|
|
help="A mask to use for inpainting. White gets painted, Black is left alone.",
|
|
),
|
|
click.option(
|
|
"--mask-prompt",
|
|
help=(
|
|
"Describe what you want masked and the AI will mask it for you. "
|
|
"You can describe complex masks with AND, OR, NOT keywords and parentheses. "
|
|
"The strength of each mask can be modified with {*1.5} notation. \n\n"
|
|
"Examples: \n"
|
|
"car AND (wheels{*1.1} OR trunk OR engine OR windows OR headlights) AND NOT (truck OR headlights){*10}\n"
|
|
"fruit|fruit stem"
|
|
),
|
|
),
|
|
click.option(
|
|
"--mask-mode",
|
|
default="replace",
|
|
show_default=True,
|
|
type=click.Choice(["keep", "replace"], case_sensitive=False),
|
|
help="Should we replace the masked area or keep it?",
|
|
),
|
|
click.option(
|
|
"--mask-modify-original",
|
|
default=True,
|
|
is_flag=True,
|
|
help="After the inpainting is done, apply the changes to a copy of the original image.",
|
|
),
|
|
click.option(
|
|
"--outpaint",
|
|
help=(
|
|
"Specify in what directions to expand the image. Values will be snapped such that output image size is multiples of 8. Examples\n"
|
|
" `--outpaint up10,down300,left50,right50`\n"
|
|
" `--outpaint u10,d300,l50,r50`\n"
|
|
" `--outpaint all200`\n"
|
|
" `--outpaint a200`\n"
|
|
),
|
|
default="",
|
|
),
|
|
click.option(
|
|
"--caption",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Generate a text description of the generated image.",
|
|
),
|
|
click.option(
|
|
"--precision",
|
|
help="Evaluate at this precision.",
|
|
type=click.Choice(["full", "autocast"], case_sensitive=False),
|
|
default="autocast",
|
|
show_default=True,
|
|
),
|
|
click.option(
|
|
"--model-weights-path",
|
|
"--model",
|
|
help=f"Model to use. Should be one of {', '.join(config.IMAGE_WEIGHTS_SHORT_NAMES)}, or a path to custom weights.",
|
|
show_default=True,
|
|
default=config.DEFAULT_MODEL_WEIGHTS,
|
|
),
|
|
click.option(
|
|
"--model-architecture",
|
|
help="Model architecture. When specifying custom weights the model architecture must be specified. (sd15, sdxl, etc).",
|
|
show_default=True,
|
|
default=None,
|
|
),
|
|
click.option(
|
|
"--prompt-library-path",
|
|
help="Path to folder containing phrase lists in txt files. Use txt filename in prompt: {_filename_}.",
|
|
type=click.Path(exists=True),
|
|
default=None,
|
|
multiple=True,
|
|
),
|
|
click.option(
|
|
"--version",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Print the version and exit.",
|
|
),
|
|
click.option(
|
|
"--gif",
|
|
"make_gif",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Create a gif of the generation.",
|
|
),
|
|
click.option(
|
|
"--compare-gif",
|
|
"make_compare_gif",
|
|
default=False,
|
|
is_flag=True,
|
|
help="Create a gif comparing the original image to the modified one.",
|
|
),
|
|
click.option(
|
|
"--arg-schedule",
|
|
"arg_schedules",
|
|
multiple=True,
|
|
help="Schedule how an argument should change over several generations. Format: `--arg-schedule arg_name[start:end:increment]` or `--arg-schedule arg_name[val,val2,val3]`",
|
|
),
|
|
click.option(
|
|
"--compilation-anim",
|
|
"make_compilation_animation",
|
|
default=None,
|
|
type=click.Choice(["gif", "mp4"]),
|
|
help="Generate an animation composed of all the images generated in this run. Defaults to gif but `--compilation-anim mp4` will generate an mp4 instead.",
|
|
),
|
|
click.option(
|
|
"--caption-text",
|
|
"caption_text",
|
|
default=None,
|
|
help="Specify the text to write onto the image",
|
|
type=str,
|
|
),
|
|
]
|