mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
e1e6f8037c
Co-authored-by: jaydrennan
155 lines
5.1 KiB
Python
155 lines
5.1 KiB
Python
import pytest
|
|
from torch import nn
|
|
|
|
from imaginairy.api import imagine
|
|
from imaginairy.schema import ImaginePrompt
|
|
from imaginairy.utils import get_device
|
|
from imaginairy.utils.model_cache import GPUModelCache
|
|
|
|
|
|
class DummyMemoryModule(nn.Module):
|
|
def __init__(self, in_features):
|
|
super().__init__()
|
|
self.large_layer = nn.Linear(in_features - 1, 1)
|
|
|
|
def forward(self, x):
|
|
return self.large_layer(x)
|
|
|
|
|
|
def create_model_of_n_bytes(n):
|
|
import math
|
|
|
|
n = int(math.floor(n / 4))
|
|
return DummyMemoryModule(n)
|
|
|
|
|
|
@pytest.mark.skip()
|
|
@pytest.mark.parametrize(
|
|
"model_version",
|
|
[
|
|
"SD-1.5",
|
|
"openjourney-v1",
|
|
"openjourney-v2",
|
|
"openjourney-v4",
|
|
],
|
|
)
|
|
def test_memory_usage(filename_base_for_orig_outputs, model_version):
|
|
"""Test that we can switch between model versions."""
|
|
prompt_text = "valley, fairytale treehouse village covered, , matte painting, highly detailed, dynamic lighting, cinematic, realism, realistic, photo real, sunset, detailed, high contrast, denoised, centered, michael whelan"
|
|
prompts = [
|
|
ImaginePrompt(prompt_text, model_weights=model_version, seed=1, steps=30)
|
|
]
|
|
|
|
for i, result in enumerate(imagine(prompts)):
|
|
img_path = f"{filename_base_for_orig_outputs}_{result.prompt.prompt_text}_{result.prompt.model}.png"
|
|
result.img.save(img_path)
|
|
|
|
|
|
def test_get_nonexistent():
|
|
cache = GPUModelCache(max_cpu_memory_gb=1, max_gpu_memory_gb=1)
|
|
with pytest.raises(KeyError):
|
|
cache.get("nonexistent_key")
|
|
|
|
|
|
@pytest.mark.skipif(get_device() == "cpu", reason="GPU not available")
|
|
def test_set_cpu_full():
|
|
cache = GPUModelCache(
|
|
max_cpu_memory_gb=0.000000001, max_gpu_memory_gb=0.01, device=get_device()
|
|
)
|
|
|
|
for i in range(4):
|
|
cache.set(f"key{i}", create_model_of_n_bytes(4_000_000))
|
|
assert len(cache.cpu_cache) == 0
|
|
assert len(cache.gpu_cache) == 2
|
|
|
|
|
|
@pytest.mark.skipif(get_device() == "cpu", reason="GPU not available")
|
|
def test_set_gpu_full():
|
|
cache = GPUModelCache(
|
|
max_cpu_memory_gb=1, max_gpu_memory_gb=0.0000001, device=get_device()
|
|
)
|
|
assert cache.max_cpu_memory == 1073741824
|
|
model = create_model_of_n_bytes(100_000)
|
|
with pytest.raises(RuntimeError):
|
|
cache.set("key1", model)
|
|
|
|
|
|
@pytest.mark.skipif(get_device() == "cpu", reason="GPU not available")
|
|
def test_get_existing_cpu():
|
|
cache = GPUModelCache(max_cpu_memory_gb=0.1, max_gpu_memory_gb=0.1, device="cpu")
|
|
model = create_model_of_n_bytes(10_000)
|
|
cache.set("key", model)
|
|
retrieved_data = cache.get("key")
|
|
assert retrieved_data == model
|
|
# assert 'key' in cache.cpu_cache
|
|
assert "key" in cache.gpu_cache
|
|
|
|
|
|
@pytest.mark.skipif(get_device() == "cpu", reason="GPU not available")
|
|
def test_get_existing_move_to_gpu():
|
|
cache = GPUModelCache(
|
|
max_cpu_memory_gb=0.1, max_gpu_memory_gb=0.1, device=get_device()
|
|
)
|
|
model = create_model_of_n_bytes(10_000)
|
|
cache.set("key", model)
|
|
retrieved_data = cache.get("key")
|
|
assert retrieved_data == model
|
|
assert "key" not in cache.cpu_cache
|
|
assert "key" in cache.gpu_cache
|
|
|
|
|
|
@pytest.mark.skipif(get_device() == "cpu", reason="GPU not available")
|
|
def test_cache_ordering():
|
|
cache = GPUModelCache(
|
|
max_cpu_memory_gb=0.01, max_gpu_memory_gb=0.01, device=get_device()
|
|
)
|
|
|
|
cache.set("key-0", create_model_of_n_bytes(4_000_000))
|
|
assert list(cache.cpu_cache.keys()) == []
|
|
assert list(cache.gpu_cache.keys()) == ["key-0"]
|
|
assert (cache.cpu_cache.memory_usage, cache.gpu_cache.memory_usage) == (
|
|
0,
|
|
4_000_000,
|
|
)
|
|
|
|
cache.set("key-1", create_model_of_n_bytes(4_000_000))
|
|
assert list(cache.cpu_cache.keys()) == []
|
|
assert list(cache.gpu_cache.keys()) == ["key-0", "key-1"]
|
|
assert (cache.cpu_cache.memory_usage, cache.gpu_cache.memory_usage) == (
|
|
0,
|
|
8_000_000,
|
|
)
|
|
|
|
cache.set("key-2", create_model_of_n_bytes(4_000_000))
|
|
assert list(cache.cpu_cache.keys()) == ["key-0"]
|
|
assert list(cache.gpu_cache.keys()) == ["key-1", "key-2"]
|
|
assert (cache.cpu_cache.memory_usage, cache.gpu_cache.memory_usage) == (
|
|
4_000_000,
|
|
8_000_000,
|
|
)
|
|
|
|
cache.set("key-3", create_model_of_n_bytes(4_000_000))
|
|
assert list(cache.cpu_cache.keys()) == ["key-0", "key-1"]
|
|
assert list(cache.gpu_cache.keys()) == ["key-2", "key-3"]
|
|
assert (cache.cpu_cache.memory_usage, cache.gpu_cache.memory_usage) == (
|
|
8_000_000,
|
|
8_000_000,
|
|
)
|
|
|
|
cache.set("key-4", create_model_of_n_bytes(4_000_000))
|
|
assert list(cache.cpu_cache.keys()) == ["key-1", "key-2"]
|
|
assert list(cache.gpu_cache.keys()) == ["key-3", "key-4"]
|
|
assert list(cache.keys()) == ["key-1", "key-2", "key-3", "key-4"]
|
|
assert (cache.cpu_cache.memory_usage, cache.gpu_cache.memory_usage) == (
|
|
8_000_000,
|
|
8_000_000,
|
|
)
|
|
|
|
cache.get("key-2")
|
|
assert list(cache.keys()) == ["key-3", "key-4", "key-2"]
|
|
|
|
cache.set("key-5", create_model_of_n_bytes(9_000_000))
|
|
assert list(cache.cpu_cache.keys()) == ["key-4", "key-2"]
|
|
assert list(cache.gpu_cache.keys()) == ["key-5"]
|
|
assert list(cache.keys()) == ["key-4", "key-2", "key-5"]
|