imaginAIry/imaginairy/vendored/clipseg/__init__.py
Bryce 37d6642c83 fix: fix model downloads that were broken
by [library change in transformers 4.27.0](8f3b4a1d5b)
2023-03-18 13:49:11 -07:00

729 lines
23 KiB
Python
Executable File

import math
from os.path import basename, dirname, isfile, join
import torch
from torch import nn
from torch.nn import functional as nnf
def precompute_clip_vectors():
from trails.initialization import init_dataset
lvis = init_dataset(
"LVIS_OneShot3",
split="train",
mask="text_label",
image_size=224,
aug=1,
normalize=True,
reduce_factor=None,
add_bar=False,
negative_prob=0.5,
)
all_names = list(lvis.category_names.values())
from models.clip_prompts import imagenet_templates
from imaginairy.vendored import clip
clip_model = clip.load("ViT-B/32", device="cuda", jit=False)[0]
prompt_vectors = {}
for name in all_names[:100]:
with torch.no_grad():
conditionals = [
t.format(name).replace("_", " ") for t in imagenet_templates
]
text_tokens = clip.tokenize(conditionals).cuda()
cond = clip_model.encode_text(text_tokens).cpu()
for cond, vec in zip(conditionals, cond):
prompt_vectors[cond] = vec.cpu()
import pickle
pickle.dump(prompt_vectors, open("precomputed_prompt_vectors.pickle", "wb"))
def get_prompt_list(prompt):
if prompt == "plain":
return ["{}"]
elif prompt == "fixed":
return ["a photo of a {}."]
elif prompt == "shuffle":
return ["a photo of a {}.", "a photograph of a {}.", "an image of a {}.", "{}."]
elif prompt == "shuffle+":
return [
"a photo of a {}.",
"a photograph of a {}.",
"an image of a {}.",
"{}.",
"a cropped photo of a {}.",
"a good photo of a {}.",
"a photo of one {}.",
"a bad photo of a {}.",
"a photo of the {}.",
]
elif prompt == "shuffle_clip":
from models.clip_prompts import imagenet_templates
return imagenet_templates
else:
raise ValueError("Invalid value for prompt")
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
"""
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
The mlp and layer norm come from CLIP.
x: input.
b: multihead attention module.
"""
x_ = b.ln_1(x)
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(
3, dim=-1
)
tgt_len, bsz, embed_dim = q.size()
head_dim = embed_dim // b.attn.num_heads
scaling = float(head_dim) ** -0.5
q = (
q.contiguous()
.view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim)
.transpose(0, 1)
)
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
q = q * scaling
attn_output_weights = torch.bmm(
q, k.transpose(1, 2)
) # n_heads * batch_size, tokens^2, tokens^2
if attn_mask is not None:
attn_mask_type, attn_mask = attn_mask
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
attn_mask = attn_mask.repeat(n_heads, 1)
if attn_mask_type == "cls_token":
# the mask only affects similarities compared to the readout-token.
attn_output_weights[:, 0, 1:] = (
attn_output_weights[:, 0, 1:] * attn_mask[None, ...]
)
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
if attn_mask_type == "all":
# print(attn_output_weights.shape, attn_mask[:, None].shape)
attn_output_weights[:, 1:, 1:] = (
attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
)
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
attn_output = torch.bmm(attn_output_weights, v)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = b.attn.out_proj(attn_output)
x = x + attn_output
x = x + b.mlp(b.ln_2(x))
if with_aff:
return x, attn_output_weights
else:
return x
class CLIPDenseBase(nn.Module):
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
super().__init__()
from imaginairy.vendored import clip
# prec = torch.FloatTensor
self.clip_model, _ = clip.load(version, device="cpu", jit=False)
self.model = self.clip_model.visual
# if not None, scale conv weights such that we obtain n_tokens.
self.n_tokens = n_tokens
for p in self.clip_model.parameters():
p.requires_grad_(False)
# conditional
if reduce_cond is not None:
self.reduce_cond = nn.Linear(512, reduce_cond)
for p in self.reduce_cond.parameters():
p.requires_grad_(False)
else:
self.reduce_cond = None
self.film_mul = nn.Linear(
512 if reduce_cond is None else reduce_cond, reduce_dim
)
self.film_add = nn.Linear(
512 if reduce_cond is None else reduce_cond, reduce_dim
)
self.reduce = nn.Linear(768, reduce_dim)
self.prompt_list = get_prompt_list(prompt)
# precomputed prompts
import pickle
if isfile("precomputed_prompt_vectors.pickle"):
precomp = pickle.load(open("precomputed_prompt_vectors.pickle", "rb"))
self.precomputed_prompts = {
k: torch.from_numpy(v) for k, v in precomp.items()
}
else:
self.precomputed_prompts = {}
def rescaled_pos_emb(self, new_size):
assert len(new_size) == 2
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
b = (
nnf.interpolate(a, new_size, mode="bicubic", align_corners=False)
.squeeze(0)
.view(768, new_size[0] * new_size[1])
.T
)
return torch.cat([self.model.positional_embedding[:1], b])
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
with torch.no_grad():
x_inp.shape[2:]
if self.n_tokens is not None:
stride2 = x_inp.shape[2] // self.n_tokens
conv_weight2 = nnf.interpolate(
self.model.conv1.weight,
(stride2, stride2),
mode="bilinear",
align_corners=True,
)
x = nnf.conv2d(
x_inp,
conv_weight2,
bias=self.model.conv1.bias,
stride=stride2,
dilation=self.model.conv1.dilation,
)
else:
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[
self.model.class_embedding.to(x.dtype)
+ torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
),
x,
],
dim=1,
) # shape = [*, grid ** 2 + 1, width]
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
if x.shape[1] != standard_n_tokens:
new_shape = int(math.sqrt(x.shape[1] - 1))
x = (
x
+ self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[
None, :, :
]
)
else:
x = x + self.model.positional_embedding.to(x.dtype)
x = self.model.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
activations, affinities = [], []
for i, res_block in enumerate(self.model.transformer.resblocks):
if mask is not None:
mask_layer, mask_type, mask_tensor = mask
if mask_layer == i or mask_layer == "all":
# import ipdb; ipdb.set_trace()
size = int(math.sqrt(x.shape[0] - 1))
attn_mask = (
mask_type,
nnf.interpolate(
mask_tensor.unsqueeze(1).float(), (size, size)
).view(mask_tensor.shape[0], size * size),
)
else:
attn_mask = None
else:
attn_mask = None
x, aff_per_head = forward_multihead_attention(
x, res_block, with_aff=True, attn_mask=attn_mask
)
if i in extract_layers:
affinities += [aff_per_head]
# if self.n_tokens is not None:
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
# else:
activations += [x]
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
print("early skip")
break
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_post(x[:, 0, :])
if self.model.proj is not None:
x = x @ self.model.proj
return x, activations, affinities
def sample_prompts(self, words, prompt_list=None):
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
prompt_indices = torch.multinomial(
torch.ones(len(prompt_list)), len(words), replacement=True
)
prompts = [prompt_list[i] for i in prompt_indices]
return [promt.format(w) for promt, w in zip(prompts, words)]
def get_cond_vec(self, conditional, batch_size):
# compute conditional from a single string
if conditional is not None and type(conditional) == str:
cond = self.compute_conditional(conditional)
cond = cond.repeat(batch_size, 1)
# compute conditional from string list/tuple
elif (
conditional is not None
and type(conditional) in {list, tuple}
and type(conditional[0]) == str
):
assert len(conditional) == batch_size
cond = self.compute_conditional(conditional)
# use conditional directly
elif (
conditional is not None
and type(conditional) == torch.Tensor
and conditional.ndim == 2
):
cond = conditional
# compute conditional from image
elif conditional is not None and type(conditional) == torch.Tensor:
with torch.no_grad():
cond, _, _ = self.visual_forward(conditional)
else:
raise ValueError("invalid conditional")
return cond
def compute_conditional(self, conditional):
from imaginairy.vendored import clip
dev = next(self.parameters()).device
if type(conditional) in {list, tuple}:
text_tokens = clip.tokenize(conditional).to(dev)
cond = self.clip_model.encode_text(text_tokens)
else:
if conditional in self.precomputed_prompts:
cond = self.precomputed_prompts[conditional].float().to(dev)
else:
text_tokens = clip.tokenize([conditional]).to(dev)
cond = self.clip_model.encode_text(text_tokens)[0]
if self.shift_vector is not None:
return cond + self.shift_vector
else:
return cond
def clip_load_untrained(version):
assert version == "ViT-B/16"
from clip.clip import _MODELS, _download
from clip.model import CLIP
model = torch.jit.load(_download(_MODELS["ViT-B/16"])).eval()
state_dict = model.state_dict()
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[
k
for k in state_dict.keys()
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
]
)
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
{k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")}
)
return CLIP(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
)
class CLIPDensePredT(CLIPDenseBase):
def __init__(
self,
version="ViT-B/32",
extract_layers=(3, 6, 9),
cond_layer=0,
reduce_dim=128,
n_heads=4,
prompt="fixed",
extra_blocks=0,
reduce_cond=None,
fix_shift=False,
learn_trans_conv_only=False,
limit_to_clip_only=False,
upsample=False,
add_calibration=False,
rev_activations=False,
trans_conv=None,
n_tokens=None,
complex_trans_conv=False,
):
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
# device = 'cpu'
self.extract_layers = extract_layers
self.cond_layer = cond_layer
self.limit_to_clip_only = limit_to_clip_only
self.process_cond = None
self.rev_activations = rev_activations
depth = len(extract_layers)
if add_calibration:
self.calibration_conds = 1
self.upsample_proj = (
nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
)
self.add_activation1 = True
self.version = version
self.token_shape = {"ViT-B/32": (7, 7), "ViT-B/16": (14, 14)}[version]
if fix_shift:
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
self.shift_vector = nn.Parameter(
torch.load(join(dirname(basename(__file__)), "shift_text_to_vis.pth")),
requires_grad=False,
)
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
else:
self.shift_vector = None
if trans_conv is None:
trans_conv_ks = {"ViT-B/32": (32, 32), "ViT-B/16": (16, 16)}[version]
else:
# explicitly define transposed conv kernel size
trans_conv_ks = (trans_conv, trans_conv)
if not complex_trans_conv:
self.trans_conv = nn.ConvTranspose2d(
reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks
)
else:
assert trans_conv_ks[0] == trans_conv_ks[1]
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
self.trans_conv = nn.Sequential(
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(
reduce_dim,
reduce_dim // 2,
kernel_size=tp_kernels[0],
stride=tp_kernels[0],
),
nn.ReLU(),
nn.ConvTranspose2d(
reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]
),
)
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
assert len(self.extract_layers) == depth
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
self.blocks = nn.ModuleList(
[
nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads)
for _ in range(len(self.extract_layers))
]
)
self.extra_blocks = nn.ModuleList(
[
nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads)
for _ in range(extra_blocks)
]
)
# refinement and trans conv
if learn_trans_conv_only:
for p in self.parameters():
p.requires_grad_(False)
for p in self.trans_conv.parameters():
p.requires_grad_(True)
self.prompt_list = get_prompt_list(prompt)
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
assert type(return_features) == bool
inp_image = inp_image.to(self.model.positional_embedding.device)
if mask is not None:
raise ValueError("mask not supported")
# x_inp = normalize(inp_image)
x_inp = inp_image
bs, dev = inp_image.shape[0], x_inp.device
cond = self.get_cond_vec(conditional, bs)
visual_q, activations, _ = self.visual_forward(
x_inp, extract_layers=[0] + list(self.extract_layers)
)
activation1 = activations[0]
activations = activations[1:]
_activations = activations[::-1] if not self.rev_activations else activations
a = None
for i, (activation, block, reduce) in enumerate(
zip(_activations, self.blocks, self.reduces)
):
if a is not None:
a = reduce(activation) + a
else:
a = reduce(activation)
if i == self.cond_layer:
if self.reduce_cond is not None:
cond = self.reduce_cond(cond)
a = self.film_mul(cond) * a + self.film_add(cond)
a = block(a)
for block in self.extra_blocks:
a = a + block(a)
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
size = int(math.sqrt(a.shape[2]))
a = a.view(bs, a.shape[1], size, size)
a = self.trans_conv(a)
if self.n_tokens is not None:
a = nnf.interpolate(a, x_inp.shape[2:], mode="bilinear", align_corners=True)
if self.upsample_proj is not None:
a = self.upsample_proj(a)
a = nnf.interpolate(a, x_inp.shape[2:], mode="bilinear")
if return_features:
return a, visual_q, cond, [activation1] + activations
else:
return (a,)
class CLIPDensePredTMasked(CLIPDensePredT):
def __init__(
self,
version="ViT-B/32",
extract_layers=(3, 6, 9),
cond_layer=0,
reduce_dim=128,
n_heads=4,
prompt="fixed",
extra_blocks=0,
reduce_cond=None,
fix_shift=False,
learn_trans_conv_only=False,
refine=None,
limit_to_clip_only=False,
upsample=False,
add_calibration=False,
n_tokens=None,
):
super().__init__(
version=version,
extract_layers=extract_layers,
cond_layer=cond_layer,
reduce_dim=reduce_dim,
n_heads=n_heads,
prompt=prompt,
extra_blocks=extra_blocks,
reduce_cond=reduce_cond,
fix_shift=fix_shift,
learn_trans_conv_only=learn_trans_conv_only,
limit_to_clip_only=limit_to_clip_only,
upsample=upsample,
add_calibration=add_calibration,
n_tokens=n_tokens,
)
def visual_forward_masked(self, img_s, seg_s):
return super().visual_forward(img_s, mask=("all", "cls_token", seg_s))
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
if seg_s is None:
cond = cond_or_img_s
else:
img_s = cond_or_img_s
with torch.no_grad():
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
return super().forward(img_q, cond, return_features=return_features)
class CLIPDenseBaseline(CLIPDenseBase):
def __init__(
self,
version="ViT-B/32",
cond_layer=0,
extract_layer=9,
reduce_dim=128,
reduce2_dim=None,
prompt="fixed",
reduce_cond=None,
limit_to_clip_only=False,
n_tokens=None,
):
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
# self.cond_layer = cond_layer
self.extract_layer = extract_layer
self.limit_to_clip_only = limit_to_clip_only
self.shift_vector = None
self.token_shape = {"ViT-B/32": (7, 7), "ViT-B/16": (14, 14)}[version]
assert reduce2_dim is not None
self.reduce2 = nn.Sequential(
nn.Linear(reduce_dim, reduce2_dim),
nn.ReLU(),
nn.Linear(reduce2_dim, reduce_dim),
)
trans_conv_ks = {"ViT-B/32": (32, 32), "ViT-B/16": (16, 16)}[version]
self.trans_conv = nn.ConvTranspose2d(
reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks
)
def forward(self, inp_image, conditional=None, return_features=False):
inp_image = inp_image.to(self.model.positional_embedding.device)
# x_inp = normalize(inp_image)
x_inp = inp_image
bs, dev = inp_image.shape[0], x_inp.device
cond = self.get_cond_vec(conditional, bs)
visual_q, activations, affinities = self.visual_forward(
x_inp, extract_layers=[self.extract_layer]
)
a = activations[0]
a = self.reduce(a)
a = self.film_mul(cond) * a + self.film_add(cond)
if self.reduce2 is not None:
a = self.reduce2(a)
# the original model would execute a transformer block here
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
size = int(math.sqrt(a.shape[2]))
a = a.view(bs, a.shape[1], size, size)
a = self.trans_conv(a)
if return_features:
return a, visual_q, cond, activations
else:
return (a,)
class CLIPSegMultiLabel(nn.Module):
def __init__(self, model) -> None:
super().__init__()
from third_party.JoEm.data_loader import VOC
self.pascal_classes = VOC
from general_utils import load_model
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
self.clipseg = load_model(model, strict=False)
self.clipseg.eval()
def forward(self, x):
bs = x.shape[0]
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
for class_id, class_name in enumerate(self.pascal_classes):
fac = 3 if class_name == "background" else 1
with torch.no_grad():
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:, 0]) * fac
out[class_id] += pred
out = out.permute(1, 0, 2, 3)
return out
# construct output tensor