mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
37d6642c83
by [library change in transformers 4.27.0](8f3b4a1d5b
)
729 lines
23 KiB
Python
Executable File
729 lines
23 KiB
Python
Executable File
import math
|
|
from os.path import basename, dirname, isfile, join
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as nnf
|
|
|
|
|
|
def precompute_clip_vectors():
|
|
from trails.initialization import init_dataset
|
|
|
|
lvis = init_dataset(
|
|
"LVIS_OneShot3",
|
|
split="train",
|
|
mask="text_label",
|
|
image_size=224,
|
|
aug=1,
|
|
normalize=True,
|
|
reduce_factor=None,
|
|
add_bar=False,
|
|
negative_prob=0.5,
|
|
)
|
|
|
|
all_names = list(lvis.category_names.values())
|
|
|
|
from models.clip_prompts import imagenet_templates
|
|
|
|
from imaginairy.vendored import clip
|
|
|
|
clip_model = clip.load("ViT-B/32", device="cuda", jit=False)[0]
|
|
prompt_vectors = {}
|
|
for name in all_names[:100]:
|
|
with torch.no_grad():
|
|
conditionals = [
|
|
t.format(name).replace("_", " ") for t in imagenet_templates
|
|
]
|
|
text_tokens = clip.tokenize(conditionals).cuda()
|
|
cond = clip_model.encode_text(text_tokens).cpu()
|
|
|
|
for cond, vec in zip(conditionals, cond):
|
|
prompt_vectors[cond] = vec.cpu()
|
|
|
|
import pickle
|
|
|
|
pickle.dump(prompt_vectors, open("precomputed_prompt_vectors.pickle", "wb"))
|
|
|
|
|
|
def get_prompt_list(prompt):
|
|
if prompt == "plain":
|
|
return ["{}"]
|
|
elif prompt == "fixed":
|
|
return ["a photo of a {}."]
|
|
elif prompt == "shuffle":
|
|
return ["a photo of a {}.", "a photograph of a {}.", "an image of a {}.", "{}."]
|
|
elif prompt == "shuffle+":
|
|
return [
|
|
"a photo of a {}.",
|
|
"a photograph of a {}.",
|
|
"an image of a {}.",
|
|
"{}.",
|
|
"a cropped photo of a {}.",
|
|
"a good photo of a {}.",
|
|
"a photo of one {}.",
|
|
"a bad photo of a {}.",
|
|
"a photo of the {}.",
|
|
]
|
|
elif prompt == "shuffle_clip":
|
|
from models.clip_prompts import imagenet_templates
|
|
|
|
return imagenet_templates
|
|
else:
|
|
raise ValueError("Invalid value for prompt")
|
|
|
|
|
|
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None):
|
|
"""
|
|
Simplified version of multihead attention (taken from torch source code but without tons of if clauses).
|
|
The mlp and layer norm come from CLIP.
|
|
x: input.
|
|
b: multihead attention module.
|
|
"""
|
|
|
|
x_ = b.ln_1(x)
|
|
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(
|
|
3, dim=-1
|
|
)
|
|
tgt_len, bsz, embed_dim = q.size()
|
|
|
|
head_dim = embed_dim // b.attn.num_heads
|
|
scaling = float(head_dim) ** -0.5
|
|
|
|
q = (
|
|
q.contiguous()
|
|
.view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim)
|
|
.transpose(0, 1)
|
|
)
|
|
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
|
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1)
|
|
|
|
q = q * scaling
|
|
|
|
attn_output_weights = torch.bmm(
|
|
q, k.transpose(1, 2)
|
|
) # n_heads * batch_size, tokens^2, tokens^2
|
|
if attn_mask is not None:
|
|
attn_mask_type, attn_mask = attn_mask
|
|
n_heads = attn_output_weights.size(0) // attn_mask.size(0)
|
|
attn_mask = attn_mask.repeat(n_heads, 1)
|
|
|
|
if attn_mask_type == "cls_token":
|
|
# the mask only affects similarities compared to the readout-token.
|
|
attn_output_weights[:, 0, 1:] = (
|
|
attn_output_weights[:, 0, 1:] * attn_mask[None, ...]
|
|
)
|
|
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0]
|
|
|
|
if attn_mask_type == "all":
|
|
# print(attn_output_weights.shape, attn_mask[:, None].shape)
|
|
attn_output_weights[:, 1:, 1:] = (
|
|
attn_output_weights[:, 1:, 1:] * attn_mask[:, None]
|
|
)
|
|
|
|
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
|
|
|
|
attn_output = torch.bmm(attn_output_weights, v)
|
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
|
attn_output = b.attn.out_proj(attn_output)
|
|
|
|
x = x + attn_output
|
|
x = x + b.mlp(b.ln_2(x))
|
|
|
|
if with_aff:
|
|
return x, attn_output_weights
|
|
else:
|
|
return x
|
|
|
|
|
|
class CLIPDenseBase(nn.Module):
|
|
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens):
|
|
super().__init__()
|
|
|
|
from imaginairy.vendored import clip
|
|
|
|
# prec = torch.FloatTensor
|
|
self.clip_model, _ = clip.load(version, device="cpu", jit=False)
|
|
self.model = self.clip_model.visual
|
|
|
|
# if not None, scale conv weights such that we obtain n_tokens.
|
|
self.n_tokens = n_tokens
|
|
|
|
for p in self.clip_model.parameters():
|
|
p.requires_grad_(False)
|
|
|
|
# conditional
|
|
if reduce_cond is not None:
|
|
self.reduce_cond = nn.Linear(512, reduce_cond)
|
|
for p in self.reduce_cond.parameters():
|
|
p.requires_grad_(False)
|
|
else:
|
|
self.reduce_cond = None
|
|
|
|
self.film_mul = nn.Linear(
|
|
512 if reduce_cond is None else reduce_cond, reduce_dim
|
|
)
|
|
self.film_add = nn.Linear(
|
|
512 if reduce_cond is None else reduce_cond, reduce_dim
|
|
)
|
|
|
|
self.reduce = nn.Linear(768, reduce_dim)
|
|
|
|
self.prompt_list = get_prompt_list(prompt)
|
|
|
|
# precomputed prompts
|
|
import pickle
|
|
|
|
if isfile("precomputed_prompt_vectors.pickle"):
|
|
precomp = pickle.load(open("precomputed_prompt_vectors.pickle", "rb"))
|
|
self.precomputed_prompts = {
|
|
k: torch.from_numpy(v) for k, v in precomp.items()
|
|
}
|
|
else:
|
|
self.precomputed_prompts = {}
|
|
|
|
def rescaled_pos_emb(self, new_size):
|
|
assert len(new_size) == 2
|
|
|
|
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape)
|
|
b = (
|
|
nnf.interpolate(a, new_size, mode="bicubic", align_corners=False)
|
|
.squeeze(0)
|
|
.view(768, new_size[0] * new_size[1])
|
|
.T
|
|
)
|
|
return torch.cat([self.model.positional_embedding[:1], b])
|
|
|
|
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None):
|
|
with torch.no_grad():
|
|
x_inp.shape[2:]
|
|
|
|
if self.n_tokens is not None:
|
|
stride2 = x_inp.shape[2] // self.n_tokens
|
|
conv_weight2 = nnf.interpolate(
|
|
self.model.conv1.weight,
|
|
(stride2, stride2),
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
x = nnf.conv2d(
|
|
x_inp,
|
|
conv_weight2,
|
|
bias=self.model.conv1.bias,
|
|
stride=stride2,
|
|
dilation=self.model.conv1.dilation,
|
|
)
|
|
else:
|
|
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid]
|
|
|
|
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
|
|
x = torch.cat(
|
|
[
|
|
self.model.class_embedding.to(x.dtype)
|
|
+ torch.zeros(
|
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
|
),
|
|
x,
|
|
],
|
|
dim=1,
|
|
) # shape = [*, grid ** 2 + 1, width]
|
|
|
|
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197
|
|
|
|
if x.shape[1] != standard_n_tokens:
|
|
new_shape = int(math.sqrt(x.shape[1] - 1))
|
|
x = (
|
|
x
|
|
+ self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[
|
|
None, :, :
|
|
]
|
|
)
|
|
else:
|
|
x = x + self.model.positional_embedding.to(x.dtype)
|
|
|
|
x = self.model.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
|
|
activations, affinities = [], []
|
|
for i, res_block in enumerate(self.model.transformer.resblocks):
|
|
if mask is not None:
|
|
mask_layer, mask_type, mask_tensor = mask
|
|
if mask_layer == i or mask_layer == "all":
|
|
# import ipdb; ipdb.set_trace()
|
|
size = int(math.sqrt(x.shape[0] - 1))
|
|
|
|
attn_mask = (
|
|
mask_type,
|
|
nnf.interpolate(
|
|
mask_tensor.unsqueeze(1).float(), (size, size)
|
|
).view(mask_tensor.shape[0], size * size),
|
|
)
|
|
|
|
else:
|
|
attn_mask = None
|
|
else:
|
|
attn_mask = None
|
|
|
|
x, aff_per_head = forward_multihead_attention(
|
|
x, res_block, with_aff=True, attn_mask=attn_mask
|
|
)
|
|
|
|
if i in extract_layers:
|
|
affinities += [aff_per_head]
|
|
|
|
# if self.n_tokens is not None:
|
|
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)]
|
|
# else:
|
|
activations += [x]
|
|
|
|
if len(extract_layers) > 0 and i == max(extract_layers) and skip:
|
|
print("early skip")
|
|
break
|
|
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
x = self.model.ln_post(x[:, 0, :])
|
|
|
|
if self.model.proj is not None:
|
|
x = x @ self.model.proj
|
|
|
|
return x, activations, affinities
|
|
|
|
def sample_prompts(self, words, prompt_list=None):
|
|
prompt_list = prompt_list if prompt_list is not None else self.prompt_list
|
|
|
|
prompt_indices = torch.multinomial(
|
|
torch.ones(len(prompt_list)), len(words), replacement=True
|
|
)
|
|
prompts = [prompt_list[i] for i in prompt_indices]
|
|
return [promt.format(w) for promt, w in zip(prompts, words)]
|
|
|
|
def get_cond_vec(self, conditional, batch_size):
|
|
# compute conditional from a single string
|
|
if conditional is not None and type(conditional) == str:
|
|
cond = self.compute_conditional(conditional)
|
|
cond = cond.repeat(batch_size, 1)
|
|
|
|
# compute conditional from string list/tuple
|
|
elif (
|
|
conditional is not None
|
|
and type(conditional) in {list, tuple}
|
|
and type(conditional[0]) == str
|
|
):
|
|
assert len(conditional) == batch_size
|
|
cond = self.compute_conditional(conditional)
|
|
|
|
# use conditional directly
|
|
elif (
|
|
conditional is not None
|
|
and type(conditional) == torch.Tensor
|
|
and conditional.ndim == 2
|
|
):
|
|
cond = conditional
|
|
|
|
# compute conditional from image
|
|
elif conditional is not None and type(conditional) == torch.Tensor:
|
|
with torch.no_grad():
|
|
cond, _, _ = self.visual_forward(conditional)
|
|
else:
|
|
raise ValueError("invalid conditional")
|
|
return cond
|
|
|
|
def compute_conditional(self, conditional):
|
|
from imaginairy.vendored import clip
|
|
|
|
dev = next(self.parameters()).device
|
|
|
|
if type(conditional) in {list, tuple}:
|
|
text_tokens = clip.tokenize(conditional).to(dev)
|
|
cond = self.clip_model.encode_text(text_tokens)
|
|
else:
|
|
if conditional in self.precomputed_prompts:
|
|
cond = self.precomputed_prompts[conditional].float().to(dev)
|
|
else:
|
|
text_tokens = clip.tokenize([conditional]).to(dev)
|
|
cond = self.clip_model.encode_text(text_tokens)[0]
|
|
|
|
if self.shift_vector is not None:
|
|
return cond + self.shift_vector
|
|
else:
|
|
return cond
|
|
|
|
|
|
def clip_load_untrained(version):
|
|
assert version == "ViT-B/16"
|
|
from clip.clip import _MODELS, _download
|
|
from clip.model import CLIP
|
|
|
|
model = torch.jit.load(_download(_MODELS["ViT-B/16"])).eval()
|
|
state_dict = model.state_dict()
|
|
|
|
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
|
vision_layers = len(
|
|
[
|
|
k
|
|
for k in state_dict.keys()
|
|
if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")
|
|
]
|
|
)
|
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
|
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
|
image_resolution = vision_patch_size * grid_size
|
|
embed_dim = state_dict["text_projection"].shape[1]
|
|
context_length = state_dict["positional_embedding"].shape[0]
|
|
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
|
transformer_width = state_dict["ln_final.weight"].shape[0]
|
|
transformer_heads = transformer_width // 64
|
|
transformer_layers = len(
|
|
{k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")}
|
|
)
|
|
|
|
return CLIP(
|
|
embed_dim,
|
|
image_resolution,
|
|
vision_layers,
|
|
vision_width,
|
|
vision_patch_size,
|
|
context_length,
|
|
vocab_size,
|
|
transformer_width,
|
|
transformer_heads,
|
|
transformer_layers,
|
|
)
|
|
|
|
|
|
class CLIPDensePredT(CLIPDenseBase):
|
|
def __init__(
|
|
self,
|
|
version="ViT-B/32",
|
|
extract_layers=(3, 6, 9),
|
|
cond_layer=0,
|
|
reduce_dim=128,
|
|
n_heads=4,
|
|
prompt="fixed",
|
|
extra_blocks=0,
|
|
reduce_cond=None,
|
|
fix_shift=False,
|
|
learn_trans_conv_only=False,
|
|
limit_to_clip_only=False,
|
|
upsample=False,
|
|
add_calibration=False,
|
|
rev_activations=False,
|
|
trans_conv=None,
|
|
n_tokens=None,
|
|
complex_trans_conv=False,
|
|
):
|
|
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
|
# device = 'cpu'
|
|
|
|
self.extract_layers = extract_layers
|
|
self.cond_layer = cond_layer
|
|
self.limit_to_clip_only = limit_to_clip_only
|
|
self.process_cond = None
|
|
self.rev_activations = rev_activations
|
|
|
|
depth = len(extract_layers)
|
|
|
|
if add_calibration:
|
|
self.calibration_conds = 1
|
|
|
|
self.upsample_proj = (
|
|
nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None
|
|
)
|
|
|
|
self.add_activation1 = True
|
|
|
|
self.version = version
|
|
|
|
self.token_shape = {"ViT-B/32": (7, 7), "ViT-B/16": (14, 14)}[version]
|
|
|
|
if fix_shift:
|
|
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False)
|
|
self.shift_vector = nn.Parameter(
|
|
torch.load(join(dirname(basename(__file__)), "shift_text_to_vis.pth")),
|
|
requires_grad=False,
|
|
)
|
|
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False)
|
|
else:
|
|
self.shift_vector = None
|
|
|
|
if trans_conv is None:
|
|
trans_conv_ks = {"ViT-B/32": (32, 32), "ViT-B/16": (16, 16)}[version]
|
|
else:
|
|
# explicitly define transposed conv kernel size
|
|
trans_conv_ks = (trans_conv, trans_conv)
|
|
|
|
if not complex_trans_conv:
|
|
self.trans_conv = nn.ConvTranspose2d(
|
|
reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks
|
|
)
|
|
else:
|
|
assert trans_conv_ks[0] == trans_conv_ks[1]
|
|
|
|
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4)
|
|
|
|
self.trans_conv = nn.Sequential(
|
|
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1),
|
|
nn.ReLU(),
|
|
nn.ConvTranspose2d(
|
|
reduce_dim,
|
|
reduce_dim // 2,
|
|
kernel_size=tp_kernels[0],
|
|
stride=tp_kernels[0],
|
|
),
|
|
nn.ReLU(),
|
|
nn.ConvTranspose2d(
|
|
reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]
|
|
),
|
|
)
|
|
|
|
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks)
|
|
|
|
assert len(self.extract_layers) == depth
|
|
|
|
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)])
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads)
|
|
for _ in range(len(self.extract_layers))
|
|
]
|
|
)
|
|
self.extra_blocks = nn.ModuleList(
|
|
[
|
|
nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads)
|
|
for _ in range(extra_blocks)
|
|
]
|
|
)
|
|
|
|
# refinement and trans conv
|
|
|
|
if learn_trans_conv_only:
|
|
for p in self.parameters():
|
|
p.requires_grad_(False)
|
|
|
|
for p in self.trans_conv.parameters():
|
|
p.requires_grad_(True)
|
|
|
|
self.prompt_list = get_prompt_list(prompt)
|
|
|
|
def forward(self, inp_image, conditional=None, return_features=False, mask=None):
|
|
assert type(return_features) == bool
|
|
|
|
inp_image = inp_image.to(self.model.positional_embedding.device)
|
|
|
|
if mask is not None:
|
|
raise ValueError("mask not supported")
|
|
|
|
# x_inp = normalize(inp_image)
|
|
x_inp = inp_image
|
|
|
|
bs, dev = inp_image.shape[0], x_inp.device
|
|
|
|
cond = self.get_cond_vec(conditional, bs)
|
|
|
|
visual_q, activations, _ = self.visual_forward(
|
|
x_inp, extract_layers=[0] + list(self.extract_layers)
|
|
)
|
|
|
|
activation1 = activations[0]
|
|
activations = activations[1:]
|
|
|
|
_activations = activations[::-1] if not self.rev_activations else activations
|
|
|
|
a = None
|
|
for i, (activation, block, reduce) in enumerate(
|
|
zip(_activations, self.blocks, self.reduces)
|
|
):
|
|
if a is not None:
|
|
a = reduce(activation) + a
|
|
else:
|
|
a = reduce(activation)
|
|
|
|
if i == self.cond_layer:
|
|
if self.reduce_cond is not None:
|
|
cond = self.reduce_cond(cond)
|
|
|
|
a = self.film_mul(cond) * a + self.film_add(cond)
|
|
|
|
a = block(a)
|
|
|
|
for block in self.extra_blocks:
|
|
a = a + block(a)
|
|
|
|
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
|
|
|
size = int(math.sqrt(a.shape[2]))
|
|
|
|
a = a.view(bs, a.shape[1], size, size)
|
|
|
|
a = self.trans_conv(a)
|
|
|
|
if self.n_tokens is not None:
|
|
a = nnf.interpolate(a, x_inp.shape[2:], mode="bilinear", align_corners=True)
|
|
|
|
if self.upsample_proj is not None:
|
|
a = self.upsample_proj(a)
|
|
a = nnf.interpolate(a, x_inp.shape[2:], mode="bilinear")
|
|
|
|
if return_features:
|
|
return a, visual_q, cond, [activation1] + activations
|
|
else:
|
|
return (a,)
|
|
|
|
|
|
class CLIPDensePredTMasked(CLIPDensePredT):
|
|
def __init__(
|
|
self,
|
|
version="ViT-B/32",
|
|
extract_layers=(3, 6, 9),
|
|
cond_layer=0,
|
|
reduce_dim=128,
|
|
n_heads=4,
|
|
prompt="fixed",
|
|
extra_blocks=0,
|
|
reduce_cond=None,
|
|
fix_shift=False,
|
|
learn_trans_conv_only=False,
|
|
refine=None,
|
|
limit_to_clip_only=False,
|
|
upsample=False,
|
|
add_calibration=False,
|
|
n_tokens=None,
|
|
):
|
|
super().__init__(
|
|
version=version,
|
|
extract_layers=extract_layers,
|
|
cond_layer=cond_layer,
|
|
reduce_dim=reduce_dim,
|
|
n_heads=n_heads,
|
|
prompt=prompt,
|
|
extra_blocks=extra_blocks,
|
|
reduce_cond=reduce_cond,
|
|
fix_shift=fix_shift,
|
|
learn_trans_conv_only=learn_trans_conv_only,
|
|
limit_to_clip_only=limit_to_clip_only,
|
|
upsample=upsample,
|
|
add_calibration=add_calibration,
|
|
n_tokens=n_tokens,
|
|
)
|
|
|
|
def visual_forward_masked(self, img_s, seg_s):
|
|
return super().visual_forward(img_s, mask=("all", "cls_token", seg_s))
|
|
|
|
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False):
|
|
if seg_s is None:
|
|
cond = cond_or_img_s
|
|
else:
|
|
img_s = cond_or_img_s
|
|
|
|
with torch.no_grad():
|
|
cond, _, _ = self.visual_forward_masked(img_s, seg_s)
|
|
|
|
return super().forward(img_q, cond, return_features=return_features)
|
|
|
|
|
|
class CLIPDenseBaseline(CLIPDenseBase):
|
|
def __init__(
|
|
self,
|
|
version="ViT-B/32",
|
|
cond_layer=0,
|
|
extract_layer=9,
|
|
reduce_dim=128,
|
|
reduce2_dim=None,
|
|
prompt="fixed",
|
|
reduce_cond=None,
|
|
limit_to_clip_only=False,
|
|
n_tokens=None,
|
|
):
|
|
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens)
|
|
|
|
# self.cond_layer = cond_layer
|
|
self.extract_layer = extract_layer
|
|
self.limit_to_clip_only = limit_to_clip_only
|
|
self.shift_vector = None
|
|
|
|
self.token_shape = {"ViT-B/32": (7, 7), "ViT-B/16": (14, 14)}[version]
|
|
|
|
assert reduce2_dim is not None
|
|
|
|
self.reduce2 = nn.Sequential(
|
|
nn.Linear(reduce_dim, reduce2_dim),
|
|
nn.ReLU(),
|
|
nn.Linear(reduce2_dim, reduce_dim),
|
|
)
|
|
|
|
trans_conv_ks = {"ViT-B/32": (32, 32), "ViT-B/16": (16, 16)}[version]
|
|
self.trans_conv = nn.ConvTranspose2d(
|
|
reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks
|
|
)
|
|
|
|
def forward(self, inp_image, conditional=None, return_features=False):
|
|
inp_image = inp_image.to(self.model.positional_embedding.device)
|
|
|
|
# x_inp = normalize(inp_image)
|
|
x_inp = inp_image
|
|
|
|
bs, dev = inp_image.shape[0], x_inp.device
|
|
|
|
cond = self.get_cond_vec(conditional, bs)
|
|
|
|
visual_q, activations, affinities = self.visual_forward(
|
|
x_inp, extract_layers=[self.extract_layer]
|
|
)
|
|
|
|
a = activations[0]
|
|
a = self.reduce(a)
|
|
a = self.film_mul(cond) * a + self.film_add(cond)
|
|
|
|
if self.reduce2 is not None:
|
|
a = self.reduce2(a)
|
|
|
|
# the original model would execute a transformer block here
|
|
|
|
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens
|
|
|
|
size = int(math.sqrt(a.shape[2]))
|
|
|
|
a = a.view(bs, a.shape[1], size, size)
|
|
a = self.trans_conv(a)
|
|
|
|
if return_features:
|
|
return a, visual_q, cond, activations
|
|
else:
|
|
return (a,)
|
|
|
|
|
|
class CLIPSegMultiLabel(nn.Module):
|
|
def __init__(self, model) -> None:
|
|
super().__init__()
|
|
|
|
from third_party.JoEm.data_loader import VOC
|
|
|
|
self.pascal_classes = VOC
|
|
|
|
from general_utils import load_model
|
|
|
|
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False)
|
|
self.clipseg = load_model(model, strict=False)
|
|
|
|
self.clipseg.eval()
|
|
|
|
def forward(self, x):
|
|
bs = x.shape[0]
|
|
out = torch.ones(21, bs, 352, 352).to(x.device) * -10
|
|
|
|
for class_id, class_name in enumerate(self.pascal_classes):
|
|
fac = 3 if class_name == "background" else 1
|
|
|
|
with torch.no_grad():
|
|
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:, 0]) * fac
|
|
|
|
out[class_id] += pred
|
|
|
|
out = out.permute(1, 0, 2, 3)
|
|
|
|
return out
|
|
|
|
# construct output tensor
|