mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
5cc73f6087
- feature: finetuning your own image models - feature: image prep command. crops to face or other interesting parts of photo - fix: back-compat for hf_hub_download - feature: add prune-ckpt command - feature: allow specification of model config file
156 lines
6.0 KiB
Python
156 lines
6.0 KiB
Python
import logging
|
|
import os
|
|
import os.path
|
|
import re
|
|
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from imaginairy import ImaginePrompt, LazyLoadingImage, imagine
|
|
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
|
|
from imaginairy.enhancers.facecrop import detect_faces, generate_face_crops
|
|
from imaginairy.enhancers.upscale_realesrgan import upscale_image
|
|
from imaginairy.vendored.smart_crop import SmartCrop
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_image_filenames(folder):
|
|
filenames = []
|
|
for filename in os.listdir(folder):
|
|
if not filename.lower().endswith((".jpg", ".jpeg", ".png")):
|
|
continue
|
|
if filename.startswith("."):
|
|
continue
|
|
filenames.append(filename)
|
|
return filenames
|
|
|
|
|
|
def prep_images(
|
|
images_dir, is_person=False, output_folder_name="prepped-images", target_size=512
|
|
):
|
|
"""
|
|
Crops and resizes a directory of images in preparation for training.
|
|
|
|
If is_person=True, it will detect the face and produces several crops at different zoom levels. For crops that
|
|
are too small, it will use the face restoration model to enhance the faces.
|
|
|
|
For non-person images, it will use the smartcrop algorithm to crop the image to the most interesting part. If the
|
|
input image is too small it will be upscaled.
|
|
|
|
Prep will go a lot faster if all the images are big enough to not require upscaling.
|
|
|
|
"""
|
|
output_folder = os.path.join(images_dir, output_folder_name)
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
logger.info(f"Prepping images in {images_dir} to {output_folder}")
|
|
image_filenames = get_image_filenames(images_dir)
|
|
pbar = tqdm(image_filenames)
|
|
for filename in pbar:
|
|
pbar.set_description(filename)
|
|
|
|
input_path = os.path.join(images_dir, filename)
|
|
img = LazyLoadingImage(filepath=input_path).convert("RGB")
|
|
if is_person:
|
|
face_rois = detect_faces(img)
|
|
if len(face_rois) == 0:
|
|
logger.info(f"No faces detected in image {filename}, skipping")
|
|
continue
|
|
if len(face_rois) > 1:
|
|
logger.info(f"Multiple faces detected in image {filename}, skipping")
|
|
continue
|
|
face_roi = face_rois[0]
|
|
face_roi_crops = generate_face_crops(
|
|
face_roi, max_width=img.width, max_height=img.height
|
|
)
|
|
for n, face_roi_crop in enumerate(face_roi_crops):
|
|
cropped_output_path = os.path.join(
|
|
output_folder, f"{filename}_[alt-{n:02d}].jpg"
|
|
)
|
|
if os.path.exists(cropped_output_path):
|
|
logger.debug(
|
|
f"Skipping {cropped_output_path} because it already exists"
|
|
)
|
|
continue
|
|
x1, y1, x2, y2 = face_roi_crop
|
|
crop_width = x2 - x1
|
|
crop_height = y2 - y1
|
|
if crop_width != crop_height:
|
|
logger.info(
|
|
f"Face ROI crop for {filename} {crop_width}x{crop_height} is not square, skipping"
|
|
)
|
|
continue
|
|
cropped_img = img.crop(face_roi_crop)
|
|
|
|
if crop_width < target_size:
|
|
logger.info(f"Upscaling {filename} {face_roi_crop}")
|
|
cropped_img = cropped_img.resize(
|
|
(target_size, target_size), resample=Image.Resampling.LANCZOS
|
|
)
|
|
cropped_img = enhance_faces(cropped_img, fidelity=1)
|
|
else:
|
|
cropped_img = cropped_img.resize(
|
|
(target_size, target_size), resample=Image.Resampling.LANCZOS
|
|
)
|
|
cropped_img.save(cropped_output_path, quality=95)
|
|
else:
|
|
# scale image so that largest dimension is target_size
|
|
n = 0
|
|
cropped_output_path = os.path.join(output_folder, f"{filename}_{n}.jpg")
|
|
if os.path.exists(cropped_output_path):
|
|
logger.debug(
|
|
f"Skipping {cropped_output_path} because it already exists"
|
|
)
|
|
continue
|
|
if img.width < target_size or img.height < target_size:
|
|
# upscale the image if it's too small
|
|
logger.info(f"Upscaling {filename}")
|
|
img = upscale_image(img)
|
|
|
|
if img.width > img.height:
|
|
scale_factor = target_size / img.height
|
|
else:
|
|
scale_factor = target_size / img.width
|
|
|
|
# downscale so shortest side is target_size
|
|
new_width = int(round(img.width * scale_factor))
|
|
new_height = int(round(img.height * scale_factor))
|
|
img = img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS)
|
|
|
|
result = SmartCrop().crop(img, width=target_size, height=target_size)
|
|
|
|
box = (
|
|
result["top_crop"]["x"],
|
|
result["top_crop"]["y"],
|
|
result["top_crop"]["width"] + result["top_crop"]["x"],
|
|
result["top_crop"]["height"] + result["top_crop"]["y"],
|
|
)
|
|
|
|
cropped_image = img.crop(box)
|
|
cropped_image.save(cropped_output_path, quality=95)
|
|
logger.info(f"Image Prep complete. Review output at {output_folder}")
|
|
|
|
|
|
def prompt_normalized(prompt):
|
|
return re.sub(r"[^a-zA-Z0-9.,\[\]-]+", "-", prompt)[:130]
|
|
|
|
|
|
def create_class_images(class_description, output_folder, num_images=200):
|
|
"""
|
|
Generate images of class_description.
|
|
"""
|
|
existing_images = get_image_filenames(output_folder)
|
|
existing_image_count = len(existing_images)
|
|
class_slug = prompt_normalized(class_description)
|
|
|
|
while existing_image_count < num_images:
|
|
prompt = ImaginePrompt(class_description, steps=20)
|
|
result = list(imagine([prompt]))[0]
|
|
if result.is_nsfw:
|
|
continue
|
|
dest = os.path.join(
|
|
output_folder, f"{existing_image_count:03d}_{class_slug}.jpg"
|
|
)
|
|
result.save(dest)
|
|
existing_image_count += 1
|