imaginAIry/imaginairy/api.py
2022-10-11 01:06:24 -05:00

413 lines
16 KiB
Python
Executable File

import logging
import os
import re
from functools import lru_cache
import numpy as np
import PIL
import torch
import torch.nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from pytorch_lightning import seed_everything
from transformers import cached_path
from imaginairy.enhancers.clip_masking import get_img_mask
from imaginairy.enhancers.describe_image_blip import generate_caption
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
from imaginairy.enhancers.upscale_realesrgan import upscale_image
from imaginairy.img_utils import pillow_fit_image_within, pillow_img_to_torch_image
from imaginairy.log_utils import (
ImageLoggingContext,
log_conditioning,
log_img,
log_latent,
)
from imaginairy.safety import SafetyMode, create_safety_score
from imaginairy.samplers.base import get_sampler
from imaginairy.samplers.plms import PLMSSchedule
from imaginairy.schema import ImaginePrompt, ImagineResult
from imaginairy.utils import (
fix_torch_group_norm,
fix_torch_nn_layer_norm,
get_device,
instantiate_from_config,
platform_appropriate_autocast,
)
LIB_PATH = os.path.dirname(__file__)
logger = logging.getLogger(__name__)
# leave undocumented. I'd ask that no one publicize this flag. Just want a
# slight barrier to entry. Please don't use this is any way that's gonna cause
# the media or politicians to freak out about AI...
IMAGINAIRY_SAFETY_MODE = os.getenv("IMAGINAIRY_SAFETY_MODE", SafetyMode.STRICT)
if IMAGINAIRY_SAFETY_MODE in {"disabled", "classify"}:
IMAGINAIRY_SAFETY_MODE = SafetyMode.RELAXED
elif IMAGINAIRY_SAFETY_MODE == "filter":
IMAGINAIRY_SAFETY_MODE = SafetyMode.STRICT
DEFAULT_MODEL_WEIGHTS_LOCATION = (
"https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media"
)
def load_model_from_config(
config, model_weights_location=DEFAULT_MODEL_WEIGHTS_LOCATION
):
model_weights_location = (
model_weights_location
if model_weights_location
else DEFAULT_MODEL_WEIGHTS_LOCATION
)
if model_weights_location.startswith("http"):
ckpt_path = cached_path(model_weights_location)
else:
ckpt_path = model_weights_location
logger.info(f"Loading model {ckpt_path} onto {get_device()} backend...")
pl_sd = torch.load(ckpt_path, map_location="cpu")
if "global_step" in pl_sd:
logger.debug(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0:
logger.debug(f"missing keys: {m}")
if len(u) > 0:
logger.debug(f"unexpected keys: {u}")
model.to(get_device())
model.eval()
return model
@lru_cache()
def load_model(model_weights_location=None):
config = "configs/stable-diffusion-v1.yaml"
config = OmegaConf.load(f"{LIB_PATH}/{config}")
model = load_model_from_config(
config, model_weights_location=model_weights_location
)
model = model.to(get_device())
return model
def imagine_image_files(
prompts,
outdir,
latent_channels=4,
downsampling_factor=8,
precision="autocast",
ddim_eta=0.0,
record_step_images=False,
output_file_extension="jpg",
print_caption=False,
model_weights_path=None,
):
generated_imgs_path = os.path.join(outdir, "generated")
os.makedirs(generated_imgs_path, exist_ok=True)
base_count = len(os.listdir(generated_imgs_path))
output_file_extension = output_file_extension.lower()
if output_file_extension not in {"jpg", "png"}:
raise ValueError("Must output a png or jpg")
def _record_step(img, description, step_count, prompt):
steps_path = os.path.join(outdir, "steps", f"{base_count:08}_S{prompt.seed}")
os.makedirs(steps_path, exist_ok=True)
filename = f"{base_count:08}_S{prompt.seed}_step{step_count:04}_{prompt_normalized(description)[:40]}.jpg"
destination = os.path.join(steps_path, filename)
draw = ImageDraw.Draw(img)
draw.text((10, 10), str(description))
img.save(destination)
for result in imagine(
prompts,
latent_channels=latent_channels,
downsampling_factor=downsampling_factor,
precision=precision,
ddim_eta=ddim_eta,
img_callback=_record_step if record_step_images else None,
add_caption=print_caption,
model_weights_path=model_weights_path,
):
prompt = result.prompt
img_str = ""
if prompt.init_image:
img_str = f"_img2img-{prompt.init_image_strength}"
basefilename = f"{base_count:06}_{prompt.seed}_{prompt.sampler_type}{prompt.steps}_PS{prompt.prompt_strength}{img_str}_{prompt_normalized(prompt.prompt_text)}"
for image_type in result.images:
subpath = os.path.join(outdir, image_type)
os.makedirs(subpath, exist_ok=True)
filepath = os.path.join(
subpath, f"{basefilename}_[{image_type}].{output_file_extension}"
)
result.save(filepath, image_type=image_type)
logger.info(f"🖼 [{image_type}] saved to: {filepath}")
base_count += 1
del result
def imagine(
prompts,
latent_channels=4,
downsampling_factor=8,
precision="autocast",
ddim_eta=0.0,
img_callback=None,
half_mode=None,
add_caption=False,
model_weights_path=None,
):
model = load_model(model_weights_location=model_weights_path)
# only run half-mode on cuda. run it by default
half_mode = half_mode is None and get_device() == "cuda"
if half_mode:
model = model.half()
# needed when model is in half mode, remove if not using half mode
# torch.set_default_tensor_type(torch.HalfTensor)
prompts = [ImaginePrompt(prompts)] if isinstance(prompts, str) else prompts
prompts = [prompts] if isinstance(prompts, ImaginePrompt) else prompts
_img_callback = None
if get_device() == "cpu":
logger.info("Running in CPU mode. it's gonna be slooooooow.")
with torch.no_grad(), platform_appropriate_autocast(
precision
), fix_torch_nn_layer_norm(), fix_torch_group_norm():
for prompt in prompts:
logger.info(f"Generating 🖼 : {prompt.prompt_description()}")
with ImageLoggingContext(
prompt=prompt,
model=model,
img_callback=img_callback,
):
seed_everything(prompt.seed)
model.tile_mode(prompt.tile_mode)
uc = None
if prompt.prompt_strength != 1.0:
uc = model.get_learned_conditioning(1 * [""])
log_conditioning(uc, "neutral conditioning")
if prompt.conditioning is not None:
c = prompt.conditioning
else:
total_weight = sum(wp.weight for wp in prompt.prompts)
c = sum(
model.get_learned_conditioning(wp.text)
* (wp.weight / total_weight)
for wp in prompt.prompts
)
log_conditioning(c, "positive conditioning")
shape = [
1,
latent_channels,
prompt.height // downsampling_factor,
prompt.width // downsampling_factor,
]
if prompt.init_image and prompt.sampler_type not in ("ddim", "plms"):
sampler_type = "plms"
logger.info(" Sampler type switched to plms for img2img")
else:
sampler_type = prompt.sampler_type
sampler = get_sampler(sampler_type, model)
mask, mask_image, mask_image_orig, mask_grayscale = (
None,
None,
None,
None,
)
if prompt.init_image:
generation_strength = 1 - prompt.init_image_strength
t_enc = int(prompt.steps * generation_strength)
try:
init_image = pillow_fit_image_within(
prompt.init_image,
max_height=prompt.height,
max_width=prompt.width,
)
except PIL.UnidentifiedImageError:
logger.warning(f"Could not load image: {prompt.init_image}")
continue
init_image_t = pillow_img_to_torch_image(init_image)
if prompt.mask_prompt:
mask_image, mask_grayscale = get_img_mask(
init_image, prompt.mask_prompt, threshold=0.1
)
elif prompt.mask_image:
mask_image = prompt.mask_image.convert("L")
if mask_image is not None:
log_img(mask_image, "init mask")
if prompt.mask_mode == ImaginePrompt.MaskMode.REPLACE:
mask_image = ImageOps.invert(mask_image)
log_img(
Image.composite(init_image, mask_image, mask_image),
"mask overlay",
)
mask_image_orig = mask_image
mask_image = mask_image.resize(
(
mask_image.width // downsampling_factor,
mask_image.height // downsampling_factor,
),
resample=Image.Resampling.LANCZOS,
)
log_img(mask_image, "latent_mask")
mask = np.array(mask_image)
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask = torch.from_numpy(mask)
mask = mask.to(get_device())
init_image_t = init_image_t.to(get_device())
init_latent = model.get_first_stage_encoding(
model.encode_first_stage(init_image_t)
)
log_latent(init_latent, "init_latent")
# encode (scaled latent)
seed_everything(prompt.seed)
noise = torch.randn_like(init_latent, device="cpu").to(get_device())
# todo: this isn't the right scheduler for everything...
schedule = PLMSSchedule(
ddpm_num_timesteps=model.num_timesteps,
ddim_num_steps=prompt.steps,
alphas_cumprod=model.alphas_cumprod,
ddim_discretize="uniform",
)
if generation_strength >= 1:
# prompt strength gets converted to time encodings,
# which means you can't get to true 0 without this hack
# (or setting steps=1000)
z_enc = noise
else:
z_enc = sampler.noise_an_image(
init_latent,
torch.tensor([t_enc - 1]).to(get_device()),
schedule=schedule,
noise=noise,
)
log_latent(z_enc, "z_enc")
# decode it
samples = sampler.decode(
initial_latent=z_enc,
cond=c,
t_start=t_enc,
schedule=schedule,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
img_callback=_img_callback,
mask=mask,
orig_latent=init_latent,
)
else:
samples = sampler.sample(
num_steps=prompt.steps,
conditioning=c,
batch_size=1,
shape=shape,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
eta=ddim_eta,
img_callback=_img_callback,
)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples:
x_sample = x_sample.to(torch.float32)
x_sample = 255.0 * rearrange(
x_sample.cpu().numpy(), "c h w -> h w c"
)
x_sample_8_orig = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample_8_orig)
if mask_image_orig and init_image:
mask_final = mask_image_orig.filter(
ImageFilter.GaussianBlur(radius=3)
)
log_img(mask_final, "reconstituting mask")
mask_final = ImageOps.invert(mask_final)
img = Image.composite(img, init_image, mask_final)
log_img(img, "reconstituted image")
upscaled_img = None
rebuilt_orig_img = None
if add_caption:
caption = generate_caption(img)
logger.info(f"Generated caption: {caption}")
safety_score = create_safety_score(
img,
safety_mode=IMAGINAIRY_SAFETY_MODE,
)
if not safety_score.is_filtered:
if prompt.fix_faces:
logger.info("Fixing 😊 's in 🖼 using CodeFormer...")
img = enhance_faces(img, fidelity=prompt.fix_faces_fidelity)
if prompt.upscale:
logger.info("Upscaling 🖼 using real-ESRGAN...")
upscaled_img = upscale_image(img)
# put the newly generated patch back into the original, full size image
if (
prompt.mask_modify_original
and mask_image_orig
and prompt.init_image
):
img_to_add_back_to_original = (
upscaled_img if upscaled_img else img
)
img_to_add_back_to_original = (
img_to_add_back_to_original.resize(
prompt.init_image.size,
resample=Image.Resampling.LANCZOS,
)
)
mask_for_orig_size = mask_image_orig.resize(
prompt.init_image.size,
resample=Image.Resampling.LANCZOS,
)
mask_for_orig_size = mask_for_orig_size.filter(
ImageFilter.GaussianBlur(radius=5)
)
log_img(mask_for_orig_size, "mask for original image size")
rebuilt_orig_img = Image.composite(
prompt.init_image,
img_to_add_back_to_original,
mask_for_orig_size,
)
log_img(rebuilt_orig_img, "reconstituted original")
yield ImagineResult(
img=img,
prompt=prompt,
upscaled_img=upscaled_img,
is_nsfw=safety_score.is_nsfw,
safety_score=safety_score,
modified_original=rebuilt_orig_img,
mask_binary=mask_image_orig,
mask_grayscale=mask_grayscale,
)
def prompt_normalized(prompt):
return re.sub(r"[^a-zA-Z0-9.,\[\]-]+", "_", prompt)[:130]