imaginAIry/tests/test_experiments.py
Bryce 38c7f88950 feature: boolean logic masks
Specify advanced text based masks using boolean logic and strength modifiers. Mask descriptions must be lowercase. Keywords uppercase.
Valid symbols: `AND`, `OR`, `NOT`, `()`, and mask strength modifier `{*1.5}` where `+` can be any of `+ - * /`. Single-character boolean
operators also work.  When writing strength modifies know that pixel values are between 0 and 1.

 - feature: apply mask edits to original files
 - feature: auto-rotate images if exif data specifies to do so
 - fix: accept mask images in command line
2022-09-24 00:02:31 -07:00

156 lines
5.0 KiB
Python

import os.path
import torch
from PIL import ImageDraw
from imaginairy import ImaginePrompt, LazyLoadingImage, imagine, imagine_image_files
from imaginairy.api import load_model
from imaginairy.img_log import ImageLoggingContext, filesafe_text, log_latent
from imaginairy.img_utils import pillow_img_to_torch_image
from imaginairy.modules.clip_embedders import FrozenCLIPEmbedder
from imaginairy.samplers.ddim import DDIMSampler
from imaginairy.utils import get_device
from tests import TESTS_FOLDER
def experiment_text_conditioning_combos():
"""
Can we do math with the embeddings?
Yes. it works but doesn't look great.
"""
embedder = FrozenCLIPEmbedder()
embedder.to(get_device())
beach_e = embedder.encode(["a beach"])
beach_water_e = embedder.encode(["a beach. ocean, waves, water"])
waterness = beach_water_e - beach_e
waterless_beach = beach_e - waterness
imagine_image_files(
[ImaginePrompt("waterless_beach", conditioning=waterless_beach, seed=1)],
outdir=f"{TESTS_FOLDER}/test_output",
)
imagine_image_files(
[ImaginePrompt("waterness", conditioning=waterness, seed=1)],
outdir=f"{TESTS_FOLDER}/test_output",
)
imagine_image_files(
[ImaginePrompt("beach", conditioning=beach_e, seed=1)],
outdir=f"{TESTS_FOLDER}/test_output",
)
def experiment_step_repeats():
"""
Run the same step over and over on an image without noise
Removes detail from the image.
"""
model = load_model()
model.to(get_device())
model.eval()
embedder = FrozenCLIPEmbedder()
embedder.to(get_device())
sampler = DDIMSampler(model)
sampler.make_schedule(1000)
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg")
init_image, _, _ = pillow_img_to_torch_image(
img,
)
init_image = init_image.to(get_device())
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))
log_latent(init_latent, "init_latent")
base_count = 1
neutral_embedding = embedder.encode([""])
outdir = f"{TESTS_FOLDER}/test_output"
def _record_step(img, description, step_count, prompt):
steps_path = os.path.join(outdir, "steps", f"{base_count:08}_S{prompt.seed}")
os.makedirs(steps_path, exist_ok=True)
filename = f"{base_count:08}_S{prompt.seed}_step{step_count:04}_{filesafe_text(description)[:40]}.png"
destination = os.path.join(steps_path, filename)
draw = ImageDraw.Draw(img)
draw.text((10, 10), str(description))
img.save(destination)
with ImageLoggingContext(
prompt=ImaginePrompt(""),
model=model,
img_callback=_record_step,
):
x_prev = init_latent
index = 50
base_count = index
t = torch.Tensor([index]).to(get_device())
# noise_pred = model.apply_model(init_latent, t, neutral_embedding)
# log_latent(noise_pred, "noise prediction")
for _ in range(100):
x_prev, pred_x0 = sampler.p_sample_ddim(x_prev, neutral_embedding, t, index)
log_latent(pred_x0, "pred_x0")
x_prev = pred_x0
def experiment_repeated_img_2_img():
"""
Experiment with putting an image repeatedly through image2image
It creates screwy images
"""
outdir = f"{TESTS_FOLDER}/test_output/img2img2img"
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg")
img.save(f"{outdir}/0.png")
for step_num in range(50):
prompt = ImaginePrompt(
"Beach at Sainte Adresse. hyperealistic photo. sharp focus, canon 5d",
init_image=img,
init_image_strength=0.50,
width=512,
height=512,
steps=50,
sampler_type="DDIM",
)
result = next(imagine(prompt))
img = result.img
os.makedirs(outdir, exist_ok=True)
img.save(f"{outdir}/{step_num:04}.png")
def experiment_superresolution():
"""
Try to trick it into making a superresolution image
Did not work, resulting image was more blurry
# i put this into the api.py file hardcoded
row_a = torch.tensor([1, 0]).repeat(32)
row_b = torch.tensor([0, 1]).repeat(32)
grid = torch.stack([row_a, row_b]).repeat(32, 1)
mask = grid
mask = mask.to(get_device())
"""
description = "a black and white photo of a dog's face"
# image was a quarter of existing image
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/../outputs/dog02.jpg")
# todo: try with 1000 mask at image resultion (rencoding entire image+predicted image at every step)
# todo: use a gaussian pyramid and only include the "high-detail" level of the pyramid into the next step
prompt = ImaginePrompt(
description,
init_image=img,
init_image_strength=0.8,
width=512,
height=512,
steps=50,
seed=1,
sampler_type="DDIM",
)
out_folder = f"{TESTS_FOLDER}/test_output"
imagine_image_files(prompt, outdir=out_folder)