mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-05 12:00:15 +00:00
130 lines
3.8 KiB
Python
130 lines
3.8 KiB
Python
import os.path
|
|
|
|
import cv2
|
|
import torch
|
|
|
|
from imaginairy.img_utils import (
|
|
add_caption_to_image,
|
|
imgpaths_to_imgs,
|
|
model_latents_to_pillow_imgs,
|
|
pillow_img_to_opencv_img,
|
|
)
|
|
from imaginairy.utils import shrink_list
|
|
|
|
|
|
def make_bounce_animation(
|
|
imgs,
|
|
outpath,
|
|
transition_duration_ms=500,
|
|
start_pause_duration_ms=1000,
|
|
end_pause_duration_ms=2000,
|
|
):
|
|
first_img = imgs[0]
|
|
last_img = imgs[-1]
|
|
middle_imgs = imgs[1:-1]
|
|
max_fps = 20
|
|
max_frames = int(round(transition_duration_ms / 1000 * max_fps))
|
|
min_duration = int(1000 / 20)
|
|
if middle_imgs:
|
|
progress_duration = int(round(transition_duration_ms / len(middle_imgs)))
|
|
else:
|
|
progress_duration = 0
|
|
progress_duration = max(progress_duration, min_duration)
|
|
|
|
middle_imgs = shrink_list(middle_imgs, max_frames)
|
|
|
|
frames = [first_img, *middle_imgs, last_img, *list(reversed(middle_imgs))]
|
|
|
|
# convert from latents
|
|
converted_frames = []
|
|
for frame in frames:
|
|
if isinstance(frame, torch.Tensor):
|
|
frame = model_latents_to_pillow_imgs(frame)[0]
|
|
converted_frames.append(frame)
|
|
frames = converted_frames
|
|
|
|
durations = (
|
|
[start_pause_duration_ms]
|
|
+ [progress_duration] * len(middle_imgs)
|
|
+ [end_pause_duration_ms]
|
|
+ [progress_duration] * len(middle_imgs)
|
|
)
|
|
|
|
make_animation(imgs=frames, outpath=outpath, frame_duration_ms=durations)
|
|
|
|
|
|
def make_slideshow_animation(
|
|
imgs,
|
|
outpath,
|
|
image_pause_ms=1000,
|
|
):
|
|
# convert from latents
|
|
converted_frames = []
|
|
for frame in imgs:
|
|
if isinstance(frame, torch.Tensor):
|
|
frame = model_latents_to_pillow_imgs(frame)[0]
|
|
converted_frames.append(frame)
|
|
|
|
durations = [image_pause_ms] * len(converted_frames)
|
|
|
|
make_animation(imgs=converted_frames, outpath=outpath, frame_duration_ms=durations)
|
|
|
|
|
|
def make_animation(imgs, outpath, frame_duration_ms=100, captions=None):
|
|
imgs = imgpaths_to_imgs(imgs)
|
|
ext = os.path.splitext(outpath)[1].lower().strip(".")
|
|
|
|
if captions:
|
|
if len(captions) != len(imgs):
|
|
raise ValueError("Captions and images must be of same length.")
|
|
for img, caption in zip(imgs, captions):
|
|
add_caption_to_image(img, caption)
|
|
|
|
if ext == "gif":
|
|
make_gif_animation(
|
|
imgs=imgs, outpath=outpath, frame_duration_ms=frame_duration_ms
|
|
)
|
|
elif ext == "mp4":
|
|
make_mp4_animation(
|
|
imgs=imgs, outpath=outpath, frame_duration_ms=frame_duration_ms
|
|
)
|
|
|
|
|
|
def make_gif_animation(imgs, outpath, frame_duration_ms=100, loop=0):
|
|
imgs = imgpaths_to_imgs(imgs)
|
|
imgs[0].save(
|
|
outpath,
|
|
save_all=True,
|
|
append_images=imgs[1:],
|
|
duration=frame_duration_ms,
|
|
loop=loop,
|
|
optimize=False,
|
|
)
|
|
|
|
|
|
def make_mp4_animation(imgs, outpath, frame_duration_ms=50, fps=30, codec="mp4v"):
|
|
imgs = imgpaths_to_imgs(imgs)
|
|
frame_size = imgs[0].size
|
|
fourcc = cv2.VideoWriter_fourcc(*codec)
|
|
out = cv2.VideoWriter(outpath, fourcc, fps, frame_size)
|
|
if not isinstance(frame_duration_ms, list):
|
|
frame_duration_ms = [frame_duration_ms] * len(imgs)
|
|
try:
|
|
for image in select_images_by_duration_at_fps(imgs, frame_duration_ms, fps):
|
|
image = pillow_img_to_opencv_img(image)
|
|
out.write(image)
|
|
finally:
|
|
out.release()
|
|
|
|
|
|
def select_images_by_duration_at_fps(images, durations_ms, fps=30):
|
|
"""select the proper image to show for each frame of a video."""
|
|
for i, image in enumerate(images):
|
|
duration = durations_ms[i] / 1000
|
|
num_frames = int(round(duration * fps))
|
|
print(
|
|
f"Showing image {i} for {num_frames} frames for {durations_ms[i]}ms at {fps} fps."
|
|
)
|
|
for j in range(num_frames):
|
|
yield image
|