imaginAIry/imaginairy/vendored/k_diffusion/sampling.py

952 lines
30 KiB
Python

import math
import torch
from scipy import integrate
from torch import nn
from torchdiffeq import odeint
from tqdm.auto import tqdm, trange
from imaginairy.utils.log_utils import log_latent
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device="cpu"):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
def get_sigmas_exponential(n, sigma_min, sigma_max, device="cpu"):
"""Constructs an exponential noise schedule."""
sigmas = torch.linspace(
math.log(sigma_max), math.log(sigma_min), n, device=device
).exp()
return append_zero(sigmas)
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1.0, device="cpu"):
"""Constructs an polynomial in log sigma noise schedule."""
ramp = torch.linspace(1, 0, n, device=device) ** rho
sigmas = torch.exp(
ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)
)
return append_zero(sigmas)
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device="cpu"):
"""Constructs a continuous VP noise schedule."""
t = torch.linspace(1, eps_s, n, device=device)
sigmas = torch.sqrt(torch.exp(beta_d * t**2 / 2 + beta_min * t) - 1)
return append_zero(sigmas)
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return ((x - denoised) / sigma.to("cpu")).to(x.device)
def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
"""Calculates the noise level (sigma_down) to step down to and the amount
of noise to add (sigma_up) when doing an ancestral sampling step."""
if not eta:
return sigma_to, 0.0
sigma_up = min(
sigma_to,
eta
* (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
)
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
return sigma_down, sigma_up
def default_noise_sampler(x):
return lambda sigma, sigma_next: torch.randn_like(x, device="cpu").to(x.device)
class BatchedBrownianTree:
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get("w0", torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2**63 - 1, [], device="cpu").item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [
torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed # noqa
]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(
torch.as_tensor(sigma_max)
)
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(
torch.as_tensor(sigma_next)
)
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
@torch.no_grad()
def sample_euler(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = (
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
if s_tmin <= sigmas[i] <= s_tmax
else 0.0
)
eps = torch.randn_like(x, device="cpu").to(x.device) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
return x
@torch.no_grad()
def sample_euler_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_heun(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = (
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
if s_tmin <= sigmas[i] <= s_tmax
else 0.0
)
eps = torch.randn_like(x, device="cpu").to(x.device) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
return x
@torch.no_grad()
def sample_dpm_2(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
s_churn=0.0,
s_tmin=0.0,
s_tmax=float("inf"),
s_noise=1.0,
):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
gamma = (
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
if s_tmin <= sigmas[i] <= s_tmax
else 0.0
)
eps = torch.randn_like(x, device="cpu").to(x.device) * s_noise
sigma_hat = sigmas[i] * (gamma + 1)
if gamma > 0:
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
denoised = model(x, sigma_hat * s_in, **extra_args)
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigma_hat,
"denoised": denoised,
}
)
if sigmas[i + 1] == 0:
# Euler method
dt = sigmas[i + 1] - sigma_hat
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
dt_1 = sigma_mid - sigma_hat
dt_2 = sigmas[i + 1] - sigma_hat
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
return x
@torch.no_grad()
def sample_dpm_2_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
):
"""Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
d = to_d(x, sigmas[i], denoised)
if sigma_down == 0:
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver-2
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
dt_1 = sigma_mid - sigmas[i]
dt_2 = sigma_down - sigmas[i]
x_2 = x + d * dt_1
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
def linear_multistep_coeff(order, t, i, j):
if order - 1 > i:
raise ValueError(f"Order {order} too high for step {i}")
def fn(tau):
prod = 1.0
for k in range(order):
if j == k:
continue
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
return prod
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
@torch.no_grad()
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigmas_cpu = sigmas.detach().cpu().numpy()
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
if len(ds) > order:
ds.pop(0)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
cur_order = min(i + 1, order)
coeffs = [
linear_multistep_coeff(cur_order, sigmas_cpu, i, j)
for j in range(cur_order)
]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
return x
@torch.no_grad()
def log_likelihood(
model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4
):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
v = torch.randint_like(x, 2, device="cpu") * 2 - 1
fevals = 0
def ode_fn(sigma, x):
nonlocal fevals
with torch.enable_grad():
x = x[0].detach().requires_grad_()
denoised = model(x, sigma * s_in, **extra_args)
d = to_d(x, sigma, denoised)
fevals += 1
grad = torch.autograd.grad((d * v).sum(), x)[0]
d_ll = (v * grad).flatten(1).sum(1)
return d.detach(), d_ll
x_min = x, x.new_zeros([x.shape[0]])
t = x.new_tensor([sigma_min, sigma_max])
sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method="dopri5")
latent, delta_ll = sol[0][-1], sol[1][-1]
ll_prior = (
torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
)
return ll_prior + delta_ll, {"fevals": fevals}
class PIDStepSizeController:
"""A PID controller for ODE adaptive step size control."""
def __init__(
self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8
):
self.h = h
self.b1 = (pcoeff + icoeff + dcoeff) / order
self.b2 = -(pcoeff + 2 * dcoeff) / order
self.b3 = dcoeff / order
self.accept_safety = accept_safety
self.eps = eps
self.errs = []
def limiter(self, x):
return 1 + math.atan(x - 1)
def propose_step(self, error):
inv_error = 1 / (float(error) + self.eps)
if not self.errs:
self.errs = [inv_error, inv_error, inv_error]
self.errs[0] = inv_error
factor = (
self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
)
factor = self.limiter(factor)
accept = factor >= self.accept_safety
if accept:
self.errs[2] = self.errs[1]
self.errs[1] = self.errs[0]
self.h *= factor
return accept
class DPMSolver(nn.Module):
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
super().__init__()
self.model = model
self.extra_args = {} if extra_args is None else extra_args
self.eps_callback = eps_callback
self.info_callback = info_callback
def t(self, sigma):
return -sigma.log()
def sigma(self, t):
return t.to("cpu").neg().exp().to(self.model.device)
def eps(self, eps_cache, key, x, t, *args, **kwargs):
if key in eps_cache:
return eps_cache[key], eps_cache
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
eps = (
x - self.model(x, sigma, *args, **self.extra_args, **kwargs)
) / self.sigma(t)
if self.eps_callback is not None:
self.eps_callback()
return eps, {key: eps, **eps_cache}
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, "eps", x, t)
x_1 = x - self.sigma(t_next) * h.expm1() * eps
return x_1, eps_cache
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, "eps", x, t)
s1 = t + r1 * h
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
eps_r1, eps_cache = self.eps(eps_cache, "eps_r1", u1, s1)
x_2 = (
x
- self.sigma(t_next) * h.expm1() * eps
- self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
)
return x_2, eps_cache
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
eps_cache = {} if eps_cache is None else eps_cache
h = t_next - t
eps, eps_cache = self.eps(eps_cache, "eps", x, t)
s1 = t + r1 * h
s2 = t + r2 * h
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
eps_r1, eps_cache = self.eps(eps_cache, "eps_r1", u1, s1)
u2 = (
x
- self.sigma(s2) * (r2 * h).expm1() * eps
- self.sigma(s2)
* (r2 / r1)
* ((r2 * h).expm1() / (r2 * h) - 1)
* (eps_r1 - eps)
)
eps_r2, eps_cache = self.eps(eps_cache, "eps_r2", u2, s2)
x_3 = (
x
- self.sigma(t_next) * h.expm1() * eps
- self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
)
return x_3, eps_cache
def dpm_solver_fast(
self, x, t_start, t_end, nfe, eta=0.0, s_noise=1.0, noise_sampler=None
):
noise_sampler = (
default_noise_sampler(x) if noise_sampler is None else noise_sampler
)
if not t_end > t_start and eta:
raise ValueError("eta must be 0 for reverse sampling")
m = math.floor(nfe / 3) + 1
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
if nfe % 3 == 0:
orders = [3] * (m - 2) + [2, 1]
else:
orders = [3] * (m - 1) + [nfe % 3]
for i in range(len(orders)):
eps_cache = {}
t, t_next = ts[i], ts[i + 1]
if eta:
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
t_next_ = torch.minimum(t_end, self.t(sd))
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
else:
t_next_, su = t_next, 0.0
eps, eps_cache = self.eps(eps_cache, "eps", x, t)
denoised = x - self.sigma(t) * eps
if self.info_callback is not None:
self.info_callback(
{"x": x, "i": i, "t": ts[i], "t_up": t, "denoised": denoised}
)
if orders[i] == 1:
x, eps_cache = self.dpm_solver_1_step(
x, t, t_next_, eps_cache=eps_cache
)
elif orders[i] == 2:
x, eps_cache = self.dpm_solver_2_step(
x, t, t_next_, eps_cache=eps_cache
)
else:
x, eps_cache = self.dpm_solver_3_step(
x, t, t_next_, eps_cache=eps_cache
)
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
return x
def dpm_solver_adaptive(
self,
x,
t_start,
t_end,
order=3,
rtol=0.05,
atol=0.0078,
h_init=0.05,
pcoeff=0.0,
icoeff=1.0,
dcoeff=0.0,
accept_safety=0.81,
eta=0.0,
s_noise=1.0,
noise_sampler=None,
):
noise_sampler = (
default_noise_sampler(x) if noise_sampler is None else noise_sampler
)
if order not in {2, 3}:
raise ValueError("order should be 2 or 3")
forward = t_end > t_start
if not forward and eta:
raise ValueError("eta must be 0 for reverse sampling")
h_init = abs(h_init) * (1 if forward else -1)
atol = torch.tensor(atol)
rtol = torch.tensor(rtol)
s = t_start
x_prev = x
accept = True
pid = PIDStepSizeController(
h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety
)
info = {"steps": 0, "nfe": 0, "n_accept": 0, "n_reject": 0}
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
eps_cache = {}
t = (
torch.minimum(t_end, s + pid.h)
if forward
else torch.maximum(t_end, s + pid.h)
)
if eta:
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
t_ = torch.minimum(t_end, self.t(sd))
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
else:
t_, su = t, 0.0
eps, eps_cache = self.eps(eps_cache, "eps", x, s)
denoised = x - self.sigma(s) * eps
if order == 2:
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
x_high, eps_cache = self.dpm_solver_2_step(
x, s, t_, eps_cache=eps_cache
)
else:
x_low, eps_cache = self.dpm_solver_2_step(
x, s, t_, r1=1 / 3, eps_cache=eps_cache
)
x_high, eps_cache = self.dpm_solver_3_step(
x, s, t_, eps_cache=eps_cache
)
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
accept = pid.propose_step(error)
if accept:
x_prev = x_low
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
s = t
info["n_accept"] += 1
else:
info["n_reject"] += 1
info["nfe"] += order
info["steps"] += 1
if self.info_callback is not None:
self.info_callback(
{
"x": x,
"i": info["steps"] - 1,
"t": s,
"t_up": s,
"denoised": denoised,
"error": error,
"h": pid.h,
**info,
}
)
return x, info
@torch.no_grad()
def sample_dpm_fast(
model,
x,
sigma_min,
sigma_max,
n,
extra_args=None,
callback=None,
disable=None,
eta=0.0,
s_noise=1.0,
noise_sampler=None,
):
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
if sigma_min <= 0 or sigma_max <= 0:
raise ValueError("sigma_min and sigma_max must not be 0")
with tqdm(total=n, disable=disable) as pbar:
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
if callback is not None:
dpm_solver.info_callback = lambda info: callback(
{
"sigma": dpm_solver.sigma(info["t"]),
"sigma_hat": dpm_solver.sigma(info["t_up"]),
**info,
}
)
return dpm_solver.dpm_solver_fast(
x,
dpm_solver.t(torch.tensor(sigma_max)),
dpm_solver.t(torch.tensor(sigma_min)),
n,
eta,
s_noise,
noise_sampler,
)
@torch.no_grad()
def sample_dpm_adaptive(
model,
x,
sigma_min,
sigma_max,
extra_args=None,
callback=None,
disable=None,
order=3,
rtol=0.05,
atol=0.0078,
h_init=0.05,
pcoeff=0.0,
icoeff=1.0,
dcoeff=0.0,
accept_safety=0.81,
eta=0.0,
s_noise=1.0,
noise_sampler=None,
return_info=False,
):
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
if sigma_min <= 0 or sigma_max <= 0:
raise ValueError("sigma_min and sigma_max must not be 0")
with tqdm(disable=disable) as pbar:
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
if callback is not None:
dpm_solver.info_callback = lambda info: callback(
{
"sigma": dpm_solver.sigma(info["t"]),
"sigma_hat": dpm_solver.sigma(info["t_up"]),
**info,
}
)
x, info = dpm_solver.dpm_solver_adaptive(
x,
dpm_solver.t(torch.tensor(sigma_max)),
dpm_solver.t(torch.tensor(sigma_min)),
order,
rtol,
atol,
h_init,
pcoeff,
icoeff,
dcoeff,
accept_safety,
eta,
s_noise,
noise_sampler,
)
if return_info:
return x, info
return x
@torch.no_grad()
def sample_dpmpp_2s_ancestral(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
def sigma_fn(t):
return t.neg().exp()
def t_fn(sigma):
return sigma.to("cpu").log().neg().to(x.device)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
if sigma_down == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigma_down - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++(2S)
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
r = 1 / 2
h = t_next - t
s = t + r * h
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
# Noise addition
if sigmas[i + 1] > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
return x
@torch.no_grad()
def sample_dpmpp_sde(
model,
x,
sigmas,
extra_args=None,
callback=None,
disable=None,
eta=1.0,
s_noise=1.0,
noise_sampler=None,
r=1 / 2,
):
"""DPM-Solver++ (stochastic)."""
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
noise_sampler = (
BrownianTreeNoiseSampler(x, sigma_min, sigma_max)
if noise_sampler is None
else noise_sampler
)
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
def sigma_fn(t):
return t.neg().exp()
def t_fn(sigma):
return sigma.to("cpu").log().neg().to(x.device)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
if sigmas[i + 1] == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
else:
# DPM-Solver++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
fac = 1 / (2 * r)
# Step 1
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (
t - t_next_
).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
return x
@torch.no_grad()
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
def sigma_fn(t):
return t.neg().exp()
def t_fn(sigma):
return sigma.to("cpu").log().neg().to(x.device)
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback(
{
"x": x,
"i": i,
"sigma": sigmas[i],
"sigma_hat": sigmas[i],
"denoised": denoised,
}
)
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
log_latent(x, "K_dpmpp_2m_x")
return x