mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
788 lines
26 KiB
Python
788 lines
26 KiB
Python
"""Classes for image generation and manipulation"""
|
|
|
|
# pylint: disable=E0213
|
|
import base64
|
|
import hashlib
|
|
import io
|
|
import json
|
|
import logging
|
|
import os.path
|
|
import random
|
|
from datetime import datetime, timezone
|
|
from enum import Enum
|
|
from io import BytesIO
|
|
from typing import TYPE_CHECKING, Any, List, Literal, cast
|
|
|
|
from pydantic import (
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
GetCoreSchemaHandler,
|
|
field_validator,
|
|
model_validator,
|
|
)
|
|
from pydantic_core import core_schema
|
|
from typing_extensions import Self
|
|
|
|
from imaginairy import config
|
|
|
|
if TYPE_CHECKING:
|
|
from pathlib import Path
|
|
|
|
from PIL import Image
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class InvalidUrlError(ValueError):
|
|
pass
|
|
|
|
|
|
class LazyLoadingImage:
|
|
"""Image file encoded as base64 string."""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
filepath: str | None = None,
|
|
url: str | None = None,
|
|
img: "Image.Image | None" = None,
|
|
b64: str | None = None,
|
|
):
|
|
if not filepath and not url and not img and not b64:
|
|
msg = "You must specify a url or filepath or img or base64 string"
|
|
raise ValueError(msg)
|
|
if sum([bool(filepath), bool(url), bool(img), bool(b64)]) > 1:
|
|
raise ValueError("You cannot multiple input methods")
|
|
|
|
# validate file exists
|
|
if filepath and not os.path.exists(filepath):
|
|
msg = f"File does not exist: {filepath}"
|
|
raise FileNotFoundError(msg)
|
|
|
|
# validate url is valid url
|
|
if url:
|
|
from urllib3.exceptions import LocationParseError
|
|
from urllib3.util import parse_url
|
|
|
|
try:
|
|
parsed_url = parse_url(url)
|
|
except LocationParseError:
|
|
raise InvalidUrlError(f"Invalid url: {url}") # noqa
|
|
if parsed_url.scheme not in {"http", "https"} or not parsed_url.host:
|
|
msg = f"Invalid url: {url}"
|
|
raise InvalidUrlError(msg)
|
|
|
|
if b64:
|
|
img = self.load_image_from_base64(b64)
|
|
|
|
self._lazy_filepath = filepath
|
|
self._lazy_url = url
|
|
self._img = img
|
|
|
|
def __getattr__(self, key):
|
|
if key == "_img":
|
|
# http://nedbatchelder.com/blog/201010/surprising_getattr_recursion.html
|
|
raise AttributeError()
|
|
self._load_img()
|
|
return getattr(self._img, key)
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__.update(state)
|
|
|
|
def __getstate__(self):
|
|
return self.__dict__
|
|
|
|
def _load_img(self):
|
|
if self._img is None:
|
|
from PIL import Image, ImageOps
|
|
|
|
if self._lazy_filepath:
|
|
self._img = Image.open(self._lazy_filepath)
|
|
logger.debug(
|
|
f"Loaded input 🖼 of size {self._img.size} from {self._lazy_filepath}"
|
|
)
|
|
elif self._lazy_url:
|
|
import requests
|
|
|
|
self._img = Image.open(
|
|
BytesIO(
|
|
requests.get(self._lazy_url, stream=True, timeout=60).content
|
|
)
|
|
)
|
|
|
|
logger.debug(
|
|
f"Loaded input 🖼 of size {self._img.size} from {self._lazy_url}"
|
|
)
|
|
else:
|
|
raise ValueError("You must specify a url or filepath")
|
|
# fix orientation
|
|
self._img = ImageOps.exif_transpose(self._img)
|
|
|
|
@classmethod
|
|
def __get_pydantic_core_schema__(
|
|
cls, source_type: Any, handler: GetCoreSchemaHandler
|
|
) -> core_schema.CoreSchema:
|
|
def validate(value: Any) -> "LazyLoadingImage":
|
|
from PIL import Image, UnidentifiedImageError
|
|
|
|
if isinstance(value, cls):
|
|
return value
|
|
if isinstance(value, Image.Image):
|
|
return cls(img=value)
|
|
if isinstance(value, str):
|
|
if "." in value[:1000]:
|
|
try:
|
|
return cls(filepath=value)
|
|
except FileNotFoundError as e:
|
|
raise ValueError(str(e)) # noqa
|
|
try:
|
|
return cls(b64=value)
|
|
except UnidentifiedImageError:
|
|
msg = "base64 string was not recognized as a valid image type"
|
|
raise ValueError(msg) # noqa
|
|
if isinstance(value, dict):
|
|
return cls(**value)
|
|
msg = "Image value must be either a LazyLoadingImage, PIL.Image.Image or a Base64 string"
|
|
raise ValueError(msg)
|
|
|
|
def handle_b64(value: Any) -> "LazyLoadingImage":
|
|
if isinstance(value, str):
|
|
return cls(b64=value)
|
|
msg = "Image value must be either a LazyLoadingImage, PIL.Image.Image or a Base64 string"
|
|
raise ValueError(msg)
|
|
|
|
return core_schema.json_or_python_schema(
|
|
json_schema=core_schema.chain_schema(
|
|
[
|
|
core_schema.str_schema(),
|
|
core_schema.no_info_before_validator_function(
|
|
handle_b64, core_schema.any_schema()
|
|
),
|
|
]
|
|
),
|
|
python_schema=core_schema.no_info_before_validator_function(
|
|
validate, core_schema.any_schema()
|
|
),
|
|
serialization=core_schema.plain_serializer_function_ser_schema(str),
|
|
)
|
|
|
|
@staticmethod
|
|
def save_image_as_base64(image: "Image.Image") -> str:
|
|
buffered = io.BytesIO()
|
|
image.save(buffered, format="PNG")
|
|
img_bytes = buffered.getvalue()
|
|
return base64.b64encode(img_bytes).decode()
|
|
|
|
@staticmethod
|
|
def load_image_from_base64(image_str: str) -> "Image.Image":
|
|
from PIL import Image
|
|
|
|
img_bytes = base64.b64decode(image_str)
|
|
return Image.open(io.BytesIO(img_bytes))
|
|
|
|
def as_base64(self):
|
|
self._load_img()
|
|
return self.save_image_as_base64(self._img)
|
|
|
|
def as_pillow(self):
|
|
self._load_img()
|
|
return self._img
|
|
|
|
def __str__(self):
|
|
return self.as_base64()
|
|
|
|
def __repr__(self):
|
|
"""human readable representation.
|
|
|
|
shows filepath or url if available.
|
|
"""
|
|
try:
|
|
return f"<LazyLoadingImage filepath={self._lazy_filepath} url={self._lazy_url}>"
|
|
except Exception as e: # noqa
|
|
return f"<LazyLoadingImage RENDER EXCEPTION*{e}*>"
|
|
|
|
|
|
class ControlInput(BaseModel):
|
|
mode: str
|
|
image: LazyLoadingImage | None = None
|
|
image_raw: LazyLoadingImage | None = None
|
|
strength: float = Field(1, ge=0, le=1000)
|
|
|
|
# @field_validator("image", "image_raw", mode="before")
|
|
# def validate_images(cls, v):
|
|
# if isinstance(v, str):
|
|
# return LazyLoadingImage(filepath=v)
|
|
#
|
|
# return v
|
|
|
|
@field_validator("image_raw")
|
|
def image_raw_validate(cls, v, info: core_schema.FieldValidationInfo):
|
|
if info.data.get("image") is not None and v is not None:
|
|
raise ValueError("You cannot specify both image and image_raw")
|
|
|
|
# if v is None and values.get("image") is None:
|
|
# raise ValueError("You must specify either image or image_raw")
|
|
|
|
return v
|
|
|
|
@field_validator("mode")
|
|
def mode_validate(cls, v):
|
|
if v not in config.CONTROL_CONFIG_SHORTCUTS:
|
|
valid_modes = list(config.CONTROL_CONFIG_SHORTCUTS.keys())
|
|
valid_modes = ", ".join(valid_modes)
|
|
msg = f"Invalid controlnet mode: '{v}'. Valid modes are: {valid_modes}"
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
|
|
class WeightedPrompt(BaseModel):
|
|
text: str
|
|
weight: float = Field(1, ge=0)
|
|
|
|
def __repr__(self):
|
|
return f"{self.weight}*({self.text})"
|
|
|
|
|
|
class MaskMode(str, Enum):
|
|
REPLACE = "replace"
|
|
KEEP = "keep"
|
|
|
|
|
|
MaskInput = MaskMode | str
|
|
PromptInput = str | WeightedPrompt | list[WeightedPrompt] | list[str] | None
|
|
InpaintMethod = Literal["finetune", "control"]
|
|
|
|
|
|
class ImaginePrompt(BaseModel, protected_namespaces=()):
|
|
model_config = ConfigDict(extra="forbid", validate_assignment=True)
|
|
|
|
prompt: List[WeightedPrompt] = Field(default=None, validate_default=True) # type: ignore
|
|
negative_prompt: List[WeightedPrompt] = Field(
|
|
default_factory=list, validate_default=True
|
|
)
|
|
prompt_strength: float = Field(default=7.5, le=50, ge=-50, validate_default=True)
|
|
init_image: LazyLoadingImage | None = Field(
|
|
None, description="base64 encoded image", validate_default=True
|
|
)
|
|
init_image_strength: float | None = Field(
|
|
ge=0, le=1, default=None, validate_default=True
|
|
)
|
|
control_inputs: List[ControlInput] = Field(
|
|
default_factory=list, validate_default=True
|
|
)
|
|
mask_prompt: str | None = Field(
|
|
default=None,
|
|
description="text description of the things to be masked",
|
|
validate_default=True,
|
|
)
|
|
mask_image: LazyLoadingImage | None = Field(default=None, validate_default=True)
|
|
mask_mode: MaskMode = MaskMode.REPLACE
|
|
mask_modify_original: bool = True
|
|
outpaint: str | None = ""
|
|
model_weights: config.ModelWeightsConfig = Field( # type: ignore
|
|
default=config.DEFAULT_MODEL_WEIGHTS, validate_default=True
|
|
)
|
|
solver_type: str = Field(default=config.DEFAULT_SOLVER, validate_default=True)
|
|
seed: int | None = Field(default=None, validate_default=True)
|
|
steps: int = Field(validate_default=True)
|
|
size: tuple[int, int] = Field(validate_default=True)
|
|
upscale: bool = False
|
|
fix_faces: bool = False
|
|
fix_faces_fidelity: float | None = Field(0.2, ge=0, le=1, validate_default=True)
|
|
conditioning: str | None = None
|
|
tile_mode: str = ""
|
|
allow_compose_phase: bool = True
|
|
is_intermediate: bool = False
|
|
collect_progress_latents: bool = False
|
|
caption_text: str = Field(
|
|
"", description="text to be overlaid on the image", validate_default=True
|
|
)
|
|
inpaint_method: InpaintMethod = "finetune"
|
|
|
|
def __init__(
|
|
self,
|
|
prompt: PromptInput = "",
|
|
*,
|
|
negative_prompt: PromptInput = None,
|
|
prompt_strength: float | None = 7.5,
|
|
init_image: LazyLoadingImage | None = None,
|
|
init_image_strength: float | None = None,
|
|
control_inputs: List[ControlInput] | None = None,
|
|
mask_prompt: str | None = None,
|
|
mask_image: LazyLoadingImage | None = None,
|
|
mask_mode: MaskInput = MaskMode.REPLACE,
|
|
mask_modify_original: bool = True,
|
|
outpaint: str | None = "",
|
|
model_weights: str | config.ModelWeightsConfig = config.DEFAULT_MODEL_WEIGHTS,
|
|
solver_type: str = config.DEFAULT_SOLVER,
|
|
seed: int | None = None,
|
|
steps: int | None = None,
|
|
size: int | str | tuple[int, int] | None = None,
|
|
upscale: bool = False,
|
|
fix_faces: bool = False,
|
|
fix_faces_fidelity: float | None = 0.2,
|
|
conditioning: str | None = None,
|
|
tile_mode: str = "",
|
|
allow_compose_phase: bool = True,
|
|
is_intermediate: bool = False,
|
|
collect_progress_latents: bool = False,
|
|
caption_text: str = "",
|
|
inpaint_method: InpaintMethod = "finetune",
|
|
):
|
|
super().__init__(
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
prompt_strength=prompt_strength,
|
|
init_image=init_image,
|
|
init_image_strength=init_image_strength,
|
|
control_inputs=control_inputs,
|
|
mask_prompt=mask_prompt,
|
|
mask_image=mask_image,
|
|
mask_mode=mask_mode,
|
|
mask_modify_original=mask_modify_original,
|
|
outpaint=outpaint,
|
|
model_weights=model_weights,
|
|
solver_type=solver_type,
|
|
seed=seed,
|
|
steps=steps,
|
|
size=size,
|
|
upscale=upscale,
|
|
fix_faces=fix_faces,
|
|
fix_faces_fidelity=fix_faces_fidelity,
|
|
conditioning=conditioning,
|
|
tile_mode=tile_mode,
|
|
allow_compose_phase=allow_compose_phase,
|
|
is_intermediate=is_intermediate,
|
|
collect_progress_latents=collect_progress_latents,
|
|
caption_text=caption_text,
|
|
inpaint_method=inpaint_method,
|
|
)
|
|
|
|
@field_validator("prompt", "negative_prompt", mode="before")
|
|
def make_into_weighted_prompts(
|
|
cls,
|
|
value: PromptInput,
|
|
) -> list[WeightedPrompt]:
|
|
match value:
|
|
case None:
|
|
return []
|
|
|
|
case str():
|
|
if value is not None:
|
|
return [WeightedPrompt(text=value)]
|
|
else:
|
|
return []
|
|
case WeightedPrompt():
|
|
return [value]
|
|
case list():
|
|
if all(isinstance(item, str) for item in value):
|
|
return [WeightedPrompt(text=str(p)) for p in value]
|
|
elif all(isinstance(item, WeightedPrompt) for item in value):
|
|
return cast(List[WeightedPrompt], value)
|
|
raise ValueError("Invalid prompt input")
|
|
|
|
@field_validator("prompt", "negative_prompt", mode="after")
|
|
@classmethod
|
|
def must_have_some_weight(cls, v):
|
|
if v:
|
|
total_weight = sum(p.weight for p in v)
|
|
if total_weight == 0:
|
|
raise ValueError("Total weight of prompts cannot be 0")
|
|
return v
|
|
|
|
@field_validator("prompt", "negative_prompt", mode="after")
|
|
def sort_prompts(cls, v):
|
|
if isinstance(v, list):
|
|
v.sort(key=lambda p: p.weight, reverse=True)
|
|
return v
|
|
|
|
@model_validator(mode="after")
|
|
def validate_negative_prompt(self):
|
|
if self.negative_prompt == []:
|
|
default_negative_prompt = config.DEFAULT_NEGATIVE_PROMPT
|
|
if self.model_weights:
|
|
default_negative_prompt = self.model_weights.defaults.get(
|
|
"negative_prompt", default_negative_prompt
|
|
)
|
|
|
|
self.negative_prompt = [WeightedPrompt(text=default_negative_prompt)]
|
|
return self
|
|
|
|
@field_validator("prompt_strength", mode="before")
|
|
def validate_prompt_strength(cls, v):
|
|
return 7.5 if v is None else v
|
|
|
|
@field_validator("tile_mode", mode="before")
|
|
def validate_tile_mode(cls, v):
|
|
valid_tile_modes = ("", "x", "y", "xy")
|
|
if v is True:
|
|
return "xy"
|
|
|
|
if v is False or v is None:
|
|
return ""
|
|
|
|
if not isinstance(v, str):
|
|
msg = f"Invalid tile_mode: '{v}'. Valid modes are: {valid_tile_modes}"
|
|
raise ValueError(msg) # noqa
|
|
|
|
v = v.lower()
|
|
if v not in valid_tile_modes:
|
|
msg = f"Invalid tile_mode: '{v}'. Valid modes are: {valid_tile_modes}"
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
@field_validator("outpaint", mode="after")
|
|
def validate_outpaint(cls, v):
|
|
from imaginairy.utils.outpaint import outpaint_arg_str_parse
|
|
|
|
outpaint_arg_str_parse(v)
|
|
return v
|
|
|
|
@field_validator("conditioning", mode="after")
|
|
def validate_conditioning(cls, v):
|
|
from torch import Tensor
|
|
|
|
if v is None:
|
|
return v
|
|
|
|
if not isinstance(v, Tensor):
|
|
raise ValueError("conditioning must be a torch.Tensor") # noqa
|
|
return v
|
|
|
|
# @field_validator("init_image", "mask_image", mode="after")
|
|
# def handle_images(cls, v):
|
|
# if isinstance(v, str):
|
|
# return LazyLoadingImage(filepath=v)
|
|
#
|
|
# return v
|
|
|
|
@model_validator(mode="after")
|
|
def set_init_from_control_inputs(self):
|
|
if self.init_image is None:
|
|
for control_input in self.control_inputs:
|
|
if control_input.image:
|
|
self.init_image = control_input.image
|
|
break
|
|
|
|
return self
|
|
|
|
@field_validator("control_inputs", mode="before")
|
|
def validate_control_inputs(cls, v):
|
|
if v is None:
|
|
v = []
|
|
return v
|
|
|
|
@field_validator("control_inputs", mode="after")
|
|
def set_image_from_init_image(cls, v, info: core_schema.FieldValidationInfo):
|
|
v = v or []
|
|
for control_input in v:
|
|
if control_input.image is None and control_input.image_raw is None:
|
|
control_input.image = info.data["init_image"]
|
|
return v
|
|
|
|
@field_validator("mask_image")
|
|
def validate_mask_image(cls, v, info: core_schema.FieldValidationInfo):
|
|
if v is not None and info.data.get("mask_prompt") is not None:
|
|
msg = "You can only set one of `mask_image` and `mask_prompt`"
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
@field_validator("mask_prompt", "mask_image", mode="before")
|
|
def validate_mask_prompt(cls, v, info: core_schema.FieldValidationInfo):
|
|
if info.data.get("init_image") is None and v:
|
|
msg = "You must set `init_image` if you want to use a mask"
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
@model_validator(mode="before")
|
|
def resolve_model_weights(cls, data: Any):
|
|
if not isinstance(data, dict):
|
|
return data
|
|
|
|
model_weights = data.get("model_weights")
|
|
if model_weights is None:
|
|
model_weights = config.DEFAULT_MODEL_WEIGHTS
|
|
from imaginairy.model_manager import resolve_model_weights_config
|
|
|
|
should_use_inpainting = bool(
|
|
data.get("mask_image") or data.get("mask_prompt") or data.get("outpaint")
|
|
)
|
|
should_use_inpainting_weights = (
|
|
should_use_inpainting and data.get("inpaint_method") == "finetune"
|
|
)
|
|
model_weights_config = resolve_model_weights_config(
|
|
model_weights=model_weights,
|
|
default_model_architecture=None,
|
|
for_inpainting=should_use_inpainting_weights,
|
|
)
|
|
data["model_weights"] = model_weights_config
|
|
|
|
return data
|
|
|
|
@field_validator("seed")
|
|
def validate_seed(cls, v):
|
|
return v
|
|
|
|
@field_validator("fix_faces_fidelity", mode="before")
|
|
def validate_fix_faces_fidelity(cls, v):
|
|
if v is None:
|
|
return 0.2
|
|
|
|
return v
|
|
|
|
@field_validator("solver_type", mode="after")
|
|
def validate_solver_type(cls, v, info: core_schema.FieldValidationInfo):
|
|
from imaginairy.samplers import SolverName
|
|
|
|
if v is None:
|
|
v = config.DEFAULT_SOLVER
|
|
|
|
v = v.lower()
|
|
|
|
if info.data.get("model") == "SD-2.0-v" and v == SolverName.PLMS:
|
|
raise ValueError("PLMS solvers is not supported for SD-2.0-v model.")
|
|
|
|
if info.data.get("model") == "edit" and v in (
|
|
SolverName.PLMS,
|
|
SolverName.DDIM,
|
|
):
|
|
msg = "PLMS and DDIM solvers are not supported for pix2pix edit model."
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
@field_validator("steps", mode="before")
|
|
def validate_steps(cls, v, info: core_schema.FieldValidationInfo):
|
|
steps_lookup = {"ddim": 50, "dpmpp": 20}
|
|
|
|
if v is None:
|
|
v = steps_lookup[info.data["solver_type"]]
|
|
|
|
try:
|
|
return int(v)
|
|
except (OverflowError, TypeError) as e:
|
|
raise ValueError("Steps must be an integer") from e
|
|
|
|
@model_validator(mode="after")
|
|
def validate_init_image_strength(self):
|
|
if self.init_image_strength is None:
|
|
if self.control_inputs:
|
|
self.init_image_strength = 0.0
|
|
elif self.outpaint or self.mask_image or self.mask_prompt:
|
|
self.init_image_strength = 0.0
|
|
else:
|
|
self.init_image_strength = 0.2
|
|
|
|
return self
|
|
|
|
@field_validator("size", mode="before")
|
|
def validate_image_size(cls, v, info: core_schema.FieldValidationInfo):
|
|
from imaginairy.model_manager import get_model_default_image_size
|
|
from imaginairy.utils.named_resolutions import normalize_image_size
|
|
|
|
if v is None:
|
|
v = get_model_default_image_size(info.data["model_weights"].architecture)
|
|
|
|
width, height = normalize_image_size(v)
|
|
|
|
return width, height
|
|
|
|
@field_validator("size", mode="after")
|
|
def validate_image_size_after(cls, v, info: core_schema.FieldValidationInfo):
|
|
width, height = v
|
|
min_size = 8
|
|
max_size = 100_000
|
|
if not min_size <= width <= max_size:
|
|
msg = f"Width must be between {min_size} and {max_size}. Got: {width}"
|
|
raise ValueError(msg)
|
|
|
|
if not min_size <= height <= max_size:
|
|
msg = f"Height must be between {min_size} and {max_size}. Got: {height}"
|
|
raise ValueError(msg)
|
|
return v
|
|
|
|
@field_validator("caption_text", mode="before")
|
|
def validate_caption_text(cls, v):
|
|
if v is None:
|
|
v = ""
|
|
|
|
return v
|
|
|
|
@property
|
|
def prompts(self):
|
|
return self.prompt
|
|
|
|
@property
|
|
def prompt_text(self) -> str:
|
|
if not self.prompt:
|
|
return ""
|
|
if len(self.prompt) == 1:
|
|
return self.prompt[0].text
|
|
return "|".join(str(p) for p in self.prompt)
|
|
|
|
@property
|
|
def negative_prompt_text(self) -> str:
|
|
if not self.negative_prompt:
|
|
return ""
|
|
if len(self.negative_prompt) == 1:
|
|
return self.negative_prompt[0].text
|
|
return "|".join(str(p) for p in self.negative_prompt)
|
|
|
|
@property
|
|
def width(self) -> int:
|
|
return self.size[0]
|
|
|
|
@property
|
|
def height(self) -> int:
|
|
return self.size[1]
|
|
|
|
@property
|
|
def should_use_inpainting(self) -> bool:
|
|
return bool(self.outpaint or self.mask_image or self.mask_prompt)
|
|
|
|
@property
|
|
def should_use_inpainting_weights(self) -> bool:
|
|
return self.should_use_inpainting and self.inpaint_method == "finetune"
|
|
|
|
@property
|
|
def model_architecture(self) -> config.ModelArchitecture:
|
|
return self.model_weights.architecture
|
|
|
|
def prompt_description(self):
|
|
return (
|
|
f'"{self.prompt_text}" {self.width}x{self.height}px '
|
|
f'negative-prompt:"{self.negative_prompt_text}" '
|
|
f"seed:{self.seed} "
|
|
f"prompt-strength:{self.prompt_strength} "
|
|
f"steps:{self.steps} solver-type:{self.solver_type} "
|
|
f"init-image-strength:{self.init_image_strength} "
|
|
f"arch:{self.model_architecture.aliases[0]} "
|
|
f"weights: {self.model_weights.aliases[0]}"
|
|
)
|
|
|
|
def logging_dict(self):
|
|
"""Return a dict of the object but with binary data replaced with reprs."""
|
|
data = self.model_dump()
|
|
data["init_image"] = repr(self.init_image)
|
|
data["mask_image"] = repr(self.mask_image)
|
|
if self.control_inputs:
|
|
data["control_inputs"] = [repr(ci) for ci in self.control_inputs]
|
|
return data
|
|
|
|
def full_copy(self, deep=True, update=None):
|
|
new_prompt = self.model_copy(
|
|
deep=deep,
|
|
update=update,
|
|
)
|
|
# new_prompt = self.model_validate(new_prompt) doesn't work for some reason https://github.com/pydantic/pydantic/issues/7387
|
|
new_prompt = new_prompt.model_validate(dict(new_prompt))
|
|
return new_prompt
|
|
|
|
def make_concrete_copy(self) -> Self:
|
|
seed = self.seed if self.seed is not None else random.randint(1, 1_000_000_000)
|
|
return self.full_copy(
|
|
deep=False,
|
|
update={
|
|
"seed": seed,
|
|
},
|
|
)
|
|
|
|
|
|
class ExifCodes:
|
|
"""https://www.awaresystems.be/imaging/tiff/tifftags/baseline.html."""
|
|
|
|
ImageDescription = 0x010E
|
|
Software = 0x0131
|
|
DateTime = 0x0132
|
|
HostComputer = 0x013C
|
|
UserComment = 0x9286
|
|
|
|
|
|
class ImagineResult:
|
|
def __init__(
|
|
self,
|
|
img,
|
|
prompt: ImaginePrompt,
|
|
is_nsfw,
|
|
safety_score,
|
|
result_images=None,
|
|
timings=None,
|
|
progress_latents=None,
|
|
):
|
|
import torch
|
|
|
|
from imaginairy.utils import get_device, get_hardware_description
|
|
from imaginairy.utils.img_utils import (
|
|
model_latent_to_pillow_img,
|
|
torch_img_to_pillow_img,
|
|
)
|
|
|
|
self.prompt = prompt
|
|
|
|
self.images = {"generated": img}
|
|
|
|
if result_images:
|
|
for img_type, r_img in result_images.items():
|
|
if r_img is None:
|
|
continue
|
|
if isinstance(r_img, torch.Tensor):
|
|
if r_img.shape[1] == 4:
|
|
r_img = model_latent_to_pillow_img(r_img)
|
|
else:
|
|
r_img = torch_img_to_pillow_img(r_img)
|
|
self.images[img_type] = r_img
|
|
|
|
self.timings = timings
|
|
self.progress_latents = progress_latents
|
|
|
|
# for backward compat
|
|
self.img = img
|
|
|
|
self.is_nsfw = is_nsfw
|
|
self.safety_score = safety_score
|
|
self.created_at = datetime.now(tz=timezone.utc)
|
|
self.torch_backend = get_device()
|
|
self.hardware_name = get_hardware_description(get_device())
|
|
|
|
def md5(self) -> str:
|
|
return hashlib.md5(self.img.tobytes()).hexdigest()
|
|
|
|
def metadata_dict(self):
|
|
return {
|
|
"prompt": self.prompt.logging_dict(),
|
|
}
|
|
|
|
def timings_str(self) -> str:
|
|
if not self.timings:
|
|
return ""
|
|
return " ".join(f"{k}:{v:.2f}s" for k, v in self.timings.items())
|
|
|
|
def _exif(self) -> "Image.Exif":
|
|
from PIL import Image
|
|
|
|
exif = Image.Exif()
|
|
exif[ExifCodes.ImageDescription] = self.prompt.prompt_description()
|
|
exif[ExifCodes.UserComment] = json.dumps(self.metadata_dict())
|
|
# help future web scrapes not ingest AI generated art
|
|
sd_version = self.prompt.model_weights.name
|
|
if len(sd_version) > 40:
|
|
sd_version = "custom weights"
|
|
exif[ExifCodes.Software] = f"Imaginairy / Stable Diffusion {sd_version}"
|
|
exif[ExifCodes.DateTime] = self.created_at.isoformat(sep=" ")[:19]
|
|
exif[ExifCodes.HostComputer] = f"{self.torch_backend}:{self.hardware_name}"
|
|
return exif
|
|
|
|
def save(self, save_path: "Path | str", image_type: str = "generated") -> None:
|
|
img = self.images.get(image_type, None)
|
|
if img is None:
|
|
msg = f"Image of type {image_type} not stored. Options are: {self.images.keys()}"
|
|
raise ValueError(msg)
|
|
|
|
img.convert("RGB").save(save_path, exif=self._exif())
|
|
|
|
|
|
class SafetyMode(str, Enum):
|
|
STRICT = "strict"
|
|
RELAXED = "relaxed"
|