imaginAIry/imaginairy/modules/diffusion/ddpm.py

2131 lines
79 KiB
Python

# type: ignore
"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci.
"""
import itertools
import logging
from contextlib import contextmanager, nullcontext
from functools import partial
from typing import Optional
import numpy as np
import pytorch_lightning as pl
import torch
from einops import rearrange, repeat
from omegaconf import ListConfig
from PIL import Image, ImageDraw, ImageFont
from torch import nn
from torch.nn import functional as F
from torch.nn.modules.utils import _pair
from torch.optim.lr_scheduler import LambdaLR
from torchvision.utils import make_grid
from tqdm import tqdm
from imaginairy.modules.attention import CrossAttention
from imaginairy.modules.autoencoder import AutoencoderKL, IdentityFirstStage
from imaginairy.modules.diffusion.util import (
extract_into_tensor,
make_beta_schedule,
noise_like,
)
from imaginairy.modules.distributions import DiagonalGaussianDistribution
from imaginairy.modules.ema import LitEma
from imaginairy.samplers.kdiff import DPMPP2MSampler
from imaginairy.utils import instantiate_from_config
from imaginairy.utils.paths import PKG_ROOT
logger = logging.getLogger(__name__)
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = []
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype(f"{PKG_ROOT}/data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
lines = "\n".join(
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
)
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def disabled_train(self):
"""
Overwrite model.train with this function to make sure train/eval mode
does not change anymore.
"""
return self
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
class DDPM(pl.LightningModule):
# classic DDPM with Gaussian diffusion, in image space
def __init__(
self,
unet_config,
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
ignore_keys=(),
load_only_unet=False,
monitor="val/loss",
use_ema=True,
first_stage_key="image",
image_size=256,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.0,
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.0,
conditioning_key=None,
parameterization="eps", # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.0,
make_it_fit=False,
ucg_training=None,
reset_ema=False,
reset_num_ema_updates=False,
):
super().__init__()
assert parameterization in [
"eps",
"x0",
"v",
], 'currently only supporting "eps" and "x0" and "v"'
self.parameterization = parameterization
# print(
# f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
# )
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.model = DiffusionWrapper(unet_config, conditioning_key)
# count_params(self.model, verbose=True)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
self.make_it_fit = make_it_fit
if reset_ema:
assert ckpt_path is not None
if ckpt_path is not None:
self.init_from_ckpt(
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
)
if reset_ema:
assert self.use_ema
print(
"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint."
)
self.model_ema = LitEma(self.model)
if reset_num_ema_updates:
print(
" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ "
)
assert self.use_ema
self.model_ema.reset_num_updates()
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
self.ucg_training = ucg_training or {}
if self.ucg_training:
self.ucg_prng = np.random.RandomState()
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer("posterior_variance", to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
"posterior_log_variance_clipped",
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
"posterior_mean_coef1",
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
)
self.register_buffer(
"posterior_mean_coef2",
to_torch(
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
),
)
if self.parameterization == "eps":
lvlb_weights = self.betas**2 / (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
elif self.parameterization == "x0":
lvlb_weights = (
0.5
* np.sqrt(torch.Tensor(alphas_cumprod))
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
)
elif self.parameterization == "v":
lvlb_weights = torch.ones_like(
self.betas**2
/ (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
)
else:
raise NotImplementedError("mu not supported")
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
@torch.no_grad()
def init_from_state_dict(self, sd, ignore_keys=(), only_model=False):
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
if self.cond_stage_key == "edit":
# from https://github.com/timothybrooks/instruct-pix2pix/blob/main/stable_diffusion/ldm/models/diffusion/ddpm_edit.py#L203-L221
input_keys = [
"model.diffusion_model.input_blocks.0.0.weight",
"model_ema.diffusion_modelinput_blocks00weight",
]
self_sd = self.state_dict()
for input_key in input_keys:
if input_key not in sd or input_key not in self_sd:
continue
input_weight = self_sd[input_key]
if input_weight.size() != sd[input_key].size():
input_weight.zero_()
input_weight[:, :4, :, :].copy_(sd[input_key])
ignore_keys.append(input_key)
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print(f"Deleting key {k} from state_dict.")
del sd[k]
if self.make_it_fit:
n_params = len(
[
name
for name, _ in itertools.chain(
self.named_parameters(), self.named_buffers()
)
]
)
for name, param in tqdm(
itertools.chain(self.named_parameters(), self.named_buffers()),
desc="Fitting old weights to new weights",
total=n_params,
):
if name not in sd:
continue
old_shape = sd[name].shape
new_shape = param.shape
assert len(old_shape) == len(new_shape)
if len(new_shape) > 2:
# we only modify first two axes
assert new_shape[2:] == old_shape[2:]
# assumes first axis corresponds to output dim
if new_shape != old_shape:
new_param = param.clone()
old_param = sd[name]
if len(new_shape) == 1:
for i in range(new_param.shape[0]):
new_param[i] = old_param[i % old_shape[0]]
elif len(new_shape) >= 2:
for i in range(new_param.shape[0]):
for j in range(new_param.shape[1]):
new_param[i, j] = old_param[
i % old_shape[0], j % old_shape[1]
]
n_used_old = torch.ones(old_shape[1])
for j in range(new_param.shape[1]):
n_used_old[j % old_shape[1]] += 1
n_used_new = torch.zeros(new_shape[1])
for j in range(new_param.shape[1]):
n_used_new[j] = n_used_old[j % old_shape[1]]
n_used_new = n_used_new[None, :]
while len(n_used_new.shape) < len(new_shape):
n_used_new = n_used_new.unsqueeze(-1)
new_param /= n_used_new
sd[name] = new_param
missing, unexpected = (
self.load_state_dict(sd, strict=False)
if not only_model
else self.model.load_state_dict(sd, strict=False)
)
# print(
# f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
# )
# if len(missing) > 0:
# print(f"Missing Keys:\n {missing}")
# if len(unexpected) > 0:
# print(f"\nUnexpected Keys:\n {unexpected}")
@torch.no_grad()
def init_from_ckpt(self, path, ignore_keys=(), only_model=False):
sd = torch.load(path, map_location="cpu")
self.init_from_state_dict(sd, ignore_keys=ignore_keys, only_model=only_model)
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
* noise
)
def predict_start_from_z_and_v(self, x_t, t, v):
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def predict_eps_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
* x_t
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised
)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(
reversed(range(self.num_timesteps)),
desc="Sampling t",
total=self.num_timesteps,
):
img = self.p_sample(
img,
torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised,
)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop(
(batch_size, channels, image_size, image_size),
return_intermediates=return_intermediates,
)
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def get_v(self, x, noise, t):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def get_loss(self, pred, target, mean=True):
if self.loss_type == "l1":
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == "l2":
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction="none")
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == "eps":
target = noise
elif self.parameterization == "x0":
target = x_start
elif self.parameterization == "v":
target = self.get_v(x_start, noise, t)
else:
msg = f"Parameterization {self.parameterization} not yet supported"
raise NotImplementedError(msg)
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
log_prefix = "train" if self.training else "val"
loss_dict.update({f"{log_prefix}/loss_simple": loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f"{log_prefix}/loss_vlb": loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f"{log_prefix}/loss": loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, "b h w c -> b c h w")
x = x.to(memory_format=torch.contiguous_format).float()
return x
def shared_step(self, batch):
x = self.get_input(batch, self.first_stage_key)
loss, loss_dict = self(x)
return loss, loss_dict
def training_step(self, batch, batch_idx):
for k in self.ucg_training:
p = self.ucg_training[k]["p"]
val = self.ucg_training[k]["val"]
if val is None:
val = ""
for i in range(len(batch[k])):
if self.ucg_prng.choice(2, p=[1 - p, p]):
batch[k][i] = val
loss, loss_dict = self.shared_step(batch)
self.log_dict(
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
)
self.log(
"global_step",
self.global_step,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
if self.use_scheduler:
lr = self.optimizers().param_groups[0]["lr"]
self.log(
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {key + "_ema": loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(
loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
)
self.log_dict(
loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True
)
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(
self, batch, N=8, n_row=2, *, sample=True, return_keys=None, **kwargs
):
log = {}
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log["inputs"] = x
# get diffusion row
diffusion_row = []
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
if sample:
# get denoise row
with self.ema_scope("Plotting"):
samples, denoise_row = self.sample(
batch_size=N, return_intermediates=True
)
log["samples"] = samples
log["denoise_row"] = self._get_rows_from_list(denoise_row)
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = [*params, self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
def _TileModeConv2DConvForward(
self, input: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor # noqa
):
if self.padding_modeX == self.padding_modeY:
self.padding_mode = self.padding_modeX
return self._orig_conv_forward(input, weight, bias)
w1 = F.pad(input, self.paddingX, mode=self.padding_modeX)
del input
w2 = F.pad(w1, self.paddingY, mode=self.padding_modeY)
del w1
return F.conv2d(w2, weight, bias, self.stride, _pair(0), self.dilation, self.groups)
class LatentDiffusion(DDPM):
"""main class."""
def __init__(
self,
first_stage_config,
cond_stage_config,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
unet_trainable=True,
**kwargs,
):
self.num_timesteps_cond = (
1 if num_timesteps_cond is None else num_timesteps_cond
)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs["timesteps"]
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = "concat" if concat_mode else "crossattn"
if cond_stage_config == "__is_unconditional__":
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.unet_trainable = unet_trainable
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except: # noqa
logger.exception("Bad num downs?")
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer("scale_factor", torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.cond_ids = None
self.clip_denoised = False
self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
# store initial padding mode so we can switch to 'circular'
# when we want tiled images
# replace conv_forward with function that can do tiling in one direction
for m in self.modules():
if isinstance(m, nn.Conv2d):
m._initial_padding_mode = m.padding_mode
m._orig_conv_forward = m._conv_forward
m._conv_forward = _TileModeConv2DConvForward.__get__(m, nn.Conv2d)
self.tile_mode(tile_mode=False)
def tile_mode(self, tile_mode):
"""For creating seamless tiles."""
tile_mode = tile_mode or ""
tile_x = "x" in tile_mode
tile_y = "y" in tile_mode
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.padding_modeX = "circular" if tile_x else "constant"
m.padding_modeY = "circular" if tile_y else "constant"
if m.padding_modeY == m.padding_modeX:
m.padding_mode = m.padding_modeX
m.paddingX = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.paddingY = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
logger.debug("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
logger.debug(
f"Training {self.__class__.__name__} as an unconditional model."
)
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != "__is_first_stage__"
assert config != "__is_unconditional__"
model = instantiate_from_config(config)
self.cond_stage_model = model
def _get_denoise_row_from_list(self, samples, desc=""):
denoise_row = []
for zd in tqdm(samples, desc=desc):
denoise_row.append(self.decode_first_stage(zd.to(self.device)))
n_imgs_per_row = len(denoise_row)
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
denoise_grid = rearrange(denoise_row, "n b c h w -> b n c h w")
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
def get_first_stage_encoding(self, encoder_posterior) -> torch.Tensor:
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.mode()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
msg = f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
raise NotImplementedError(msg)
return self.scale_factor * z
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, "encode") and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
def meshgrid(self, h, w):
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
arr = torch.cat([y, x], dim=-1)
return arr
def delta_border(self, h, w):
"""
:param h: height
:param w: width
:return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
edge_dist = torch.min(
torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
)[0]
return edge_dist
def get_weighting(self, h, w, Ly, Lx, device):
weighting = self.delta_border(h, w)
weighting = torch.clip(
weighting,
self.split_input_params["clip_min_weight"],
self.split_input_params["clip_max_weight"],
)
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
if self.split_input_params["tie_braker"]:
L_weighting = self.delta_border(Ly, Lx)
L_weighting = torch.clip(
L_weighting,
self.split_input_params["clip_min_tie_weight"],
self.split_input_params["clip_max_tie_weight"],
)
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
weighting = weighting * L_weighting
return weighting
def get_fold_unfold(
self, x, kernel_size, stride, uf=1, df=1
): # todo load once not every time, shorten code
"""
:param x: img of size (bs, c, h, w)
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
"""
bs, nc, h, w = x.shape
# number of crops in image
Ly = (h - kernel_size[0]) // stride[0] + 1
Lx = (w - kernel_size[1]) // stride[1] + 1
if uf == 1 and df == 1:
fold_params = {
"kernel_size": kernel_size,
"dilation": 1,
"padding": 0,
"stride": stride,
}
unfold = torch.nn.Unfold(**fold_params)
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
weighting = self.get_weighting(
kernel_size[0], kernel_size[1], Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
elif uf > 1 and df == 1:
fold_params = {
"kernel_size": kernel_size,
"dilation": 1,
"padding": 0,
"stride": stride,
}
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = {
"kernel_size": (kernel_size[0] * uf, kernel_size[0] * uf),
"dilation": 1,
"padding": 0,
"stride": (stride[0] * uf, stride[1] * uf),
}
fold = torch.nn.Fold(
output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
)
weighting = self.get_weighting(
kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h * uf, w * uf
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
)
elif df > 1 and uf == 1:
Ly = (h - (kernel_size[0] * df)) // (stride[0] * df) + 1
Lx = (w - (kernel_size[1] * df)) // (stride[1] * df) + 1
unfold_params = {
"kernel_size": (kernel_size[0] * df, kernel_size[1] * df),
"dilation": 1,
"padding": 0,
"stride": (stride[0] * df, stride[1] * df),
}
unfold = torch.nn.Unfold(**unfold_params)
fold_params = {
"kernel_size": kernel_size,
"dilation": 1,
"padding": 0,
"stride": stride,
}
fold = torch.nn.Fold(
output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params
)
weighting = self.get_weighting(
kernel_size[0], kernel_size[1], Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h // df, w // df
) # normalizes the overlap
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
else:
raise NotImplementedError
return fold, unfold, normalization, weighting
@torch.no_grad()
def get_input(
self,
batch,
k,
return_first_stage_outputs=False,
force_c_encode=False,
cond_key=None,
return_original_cond=False,
bs=None,
):
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ["caption", "coordinates_bbox", "txt"]:
xc = batch[cond_key]
elif cond_key == "class_label":
xc = batch
else:
xc = super().get_input(batch, cond_key).to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, (dict, list)):
# import pudb; pudb.set_trace()
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
ckey = __conditioning_keys__[self.model.conditioning_key]
c = {ckey: c, "pos_x": pos_x, "pos_y": pos_y}
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {"pos_x": pos_x, "pos_y": pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, "b h w c -> b c h w").contiguous()
z = 1.0 / self.scale_factor * z
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_first_stage(self, x):
return self.first_stage_model.encode(x)
def shared_step(self, batch, **kwargs):
x, c = self.get_input(batch, self.first_stage_key)
loss = self(x, c)
return loss
def forward(self, x, c, *args, **kwargs):
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
if self.model.conditioning_key is not None:
assert c is not None
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is expected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
key = (
"c_concat" if self.model.conditioning_key == "concat" else "c_crossattn"
)
cond = {key: cond}
if False and hasattr(self, "split_input_params"): # noqa
assert len(cond) == 1 # todo can only deal with one conditioning atm
assert not return_ids
ks = self.split_input_params["ks"] # eg. (128, 128)
stride = self.split_input_params["stride"] # eg. (64, 64)
h, w = x_noisy.shape[-2:]
fold, unfold, normalization, weighting = self.get_fold_unfold(
x_noisy, ks, stride
)
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
if (
self.cond_stage_key in ["image", "LR_image", "segmentation", "bbox_img"]
and self.model.conditioning_key
): # todo check for completeness
c_key = next(iter(cond.keys())) # get key
c = next(iter(cond.values())) # get value
assert len(c) == 1 # todo extend to list with more than one elem
c = c[0] # get element
c = unfold(c)
c = c.view(
(c.shape[0], -1, ks[0], ks[1], c.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
elif self.cond_stage_key == "coordinates_bbox":
assert (
"original_image_size" in self.split_input_params
), "BoudingBoxRescaling is missing original_image_size"
# assuming padding of unfold is always 0 and its dilation is always 1
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
full_img_h, full_img_w = self.split_input_params["original_image_size"]
# as we are operating on latents, we need the factor from the original image size to the
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
num_downs = self.first_stage_model.encoder.num_resolutions - 1
rescale_latent = 2 ** (num_downs)
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
# need to rescale the tl patch coordinates to be in between (0,1)
tl_patch_coordinates = [
(
rescale_latent
* stride[0]
* (patch_nr % n_patches_per_row)
/ full_img_w,
rescale_latent
* stride[1]
* (patch_nr // n_patches_per_row)
/ full_img_h,
)
for patch_nr in range(z.shape[-1])
]
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
patch_limits = [
(
x_tl,
y_tl,
rescale_latent * ks[0] / full_img_w,
rescale_latent * ks[1] / full_img_h,
)
for x_tl, y_tl in tl_patch_coordinates
]
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
# tokenize crop coordinates for the bounding boxes of the respective patches
patch_limits_tknzd = [
torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(
self.device
)
for bbox in patch_limits
] # list of length l with tensors of shape (1, 2)
# cut tknzd crop position from conditioning
assert isinstance(cond, dict), "cond must be dict to be fed into model"
cut_cond = cond["c_crossattn"][0][..., :-2].to(self.device)
adapted_cond = torch.stack(
[torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]
)
adapted_cond = rearrange(adapted_cond, "l b n -> (l b) n")
adapted_cond = self.get_learned_conditioning(adapted_cond)
adapted_cond = rearrange(
adapted_cond, "(l b) n d -> l b n d", l=z.shape[-1]
)
cond_list = [{"c_crossattn": [e]} for e in adapted_cond]
else:
cond_list = [
cond for i in range(z.shape[-1])
] # Todo make this more efficient
# apply model by loop over crops
output_list = [
self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])
]
assert not isinstance(
output_list[0], tuple
) # todo can't deal with multiple model outputs check this never happens
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
# stitch crops together
x_recon = fold(o) / normalization
else:
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
return x_recon
def p_losses(self, x_start, cond, t, noise=None):
noise = noise if noise is not None else torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = "train" if self.training else "val"
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict.update({f"{prefix}/loss_simple": loss_simple.mean()})
# t sometimes on wrong device. not sure why
logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f"{prefix}/loss_gamma": loss.mean()})
loss_dict.update({"logvar": self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f"{prefix}/loss_vlb": loss_vlb})
loss += self.original_elbo_weight * loss_vlb
loss_dict.update({f"{prefix}/loss": loss})
return loss, loss_dict
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
if quantize_denoised:
x_recon, _, _ = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
if return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
if return_x0:
return (
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start, device="cpu").to(x_start.device)
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
sampler = DPMPP2MSampler(self)
shape = (batch_size, self.channels, self.image_size, self.image_size)
uncond = kwargs.get("unconditional_conditioning")
if uncond is None:
uncond = self.get_unconditional_conditioning(batch_size, "")
positive_conditioning = {
"c_concat": [],
"c_crossattn": [cond],
}
neutral_conditioning = {
"c_concat": [],
"c_crossattn": [uncond],
}
samples = sampler.sample(
num_steps=ddim_steps,
positive_conditioning=positive_conditioning,
neutral_conditioning=neutral_conditioning,
guidance_scale=kwargs.get("unconditional_guidance_scale", 5.0),
shape=shape,
batch_size=1,
)
return samples, []
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
if isinstance(xc, ListConfig):
xc = list(xc)
if isinstance(xc, (dict, list)):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
# todo: get null label from cond_stage_model
raise NotImplementedError()
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
@torch.no_grad()
def log_images(
self,
batch,
N=8,
n_row=4,
sample=True,
ddim_steps=50,
ddim_eta=1.0,
return_keys=None,
quantize_denoised=True,
inpaint=True,
plot_denoise_rows=False,
plot_progressive_rows=True,
plot_diffusion_rows=True,
unconditional_guidance_scale=1.0,
unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs,
):
ema_scope = self.ema_scope if use_ema_scope else nullcontext
use_ddim = ddim_steps is not None
log = {}
z, c, x, xrec, xc = self.get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N,
)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x
log["reconstruction"] = xrec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key in ["caption", "txt"]:
xc = log_txt_as_img(
(x.shape[2], x.shape[3]),
batch[self.cond_stage_key],
size=x.shape[2] // 25,
)
log["conditioning"] = xc
elif self.cond_stage_key == "class_label":
# xc = log_txt_as_img(
# (x.shape[2], x.shape[3]),
# batch["human_label"],
# size=x.shape[2] // 25,
# )
log["conditioning"] = xc
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
with ema_scope("Sampling"):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if (
quantize_denoised
and not isinstance(self.first_stage_model, AutoencoderKL)
and not isinstance(self.first_stage_model, IdentityFirstStage)
):
# also display when quantizing x0 while sampling
with ema_scope("Plotting Quantized Denoised"):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
quantize_denoised=True,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
# quantize_denoised=True)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_x0_quantized"] = x_samples
if unconditional_guidance_scale > 1.0:
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
# uc = torch.zeros_like(c)
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[
f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
] = x_samples_cfg
if inpaint:
# make a simple center square
b, h, w = z.shape[0], z.shape[2], z.shape[3] # noqa
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
mask = mask[:, None, ...]
with ema_scope("Plotting Inpaint"):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_inpainting"] = x_samples
log["mask"] = mask
# outpaint
mask = 1.0 - mask
with ema_scope("Plotting Outpaint"):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
x_samples = self.decode_first_stage(samples.to(self.device))
log["samples_outpainting"] = x_samples
if plot_progressive_rows:
with ema_scope("Plotting Progressives"):
img, progressives = self.progressive_denoising(
c,
shape=(self.channels, self.image_size, self.image_size),
batch_size=N,
)
prog_row = self._get_denoise_row_from_list(
progressives, desc="Progressive Generation"
)
log["progressive_row"] = prog_row
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = []
if self.unet_trainable == "attn":
logger.info("Training only unet attention layers")
for n, m in self.model.named_modules():
if isinstance(m, CrossAttention) and n.endswith("attn2"):
params.extend(m.parameters())
elif self.unet_trainable is True or self.unet_trainable == "all":
logger.info("Training the full unet")
params = list(self.model.parameters())
else:
msg = f"Unrecognised setting for unet_trainable: {self.unet_trainable}"
raise ValueError(msg)
if self.cond_stage_trainable:
logger.info(
f"{self.__class__.__name__}: Also optimizing conditioner params!"
)
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
logger.info("Diffusion model optimizing logvar")
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
if self.use_scheduler:
assert "target" in self.scheduler_config
scheduler = instantiate_from_config(self.scheduler_config)
logger.info("Setting up LambdaLR scheduler...")
scheduler = [
{
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
"interval": "step",
"frequency": 1,
}
]
return [opt], scheduler
return opt
@torch.no_grad()
def to_rgb(self, x):
x = x.float()
if not hasattr(self, "colorize"):
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = nn.functional.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
return x
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
self.conditioning_key = conditioning_key
assert self.conditioning_key in [None, "concat", "crossattn", "hybrid", "adm"]
def forward(
self, x, t, c_concat: Optional[list] = None, c_crossattn: Optional[list] = None
):
if self.conditioning_key is None:
out = self.diffusion_model(x, t)
elif self.conditioning_key == "concat":
xc = torch.cat([x, *c_concat], dim=1)
out = self.diffusion_model(xc, t)
elif self.conditioning_key == "crossattn":
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc)
elif self.conditioning_key == "hybrid":
xc = torch.cat([x, *c_concat], dim=1)
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(xc, t, context=cc)
elif self.conditioning_key == "adm":
cc = c_crossattn[0]
out = self.diffusion_model(x, t, y=cc)
else:
raise NotImplementedError()
return out
class LatentFinetuneDiffusion(LatentDiffusion):
"""
Basis for different finetunas, such as inpainting or depth2image
To disable finetuning mode, set finetune_keys to None.
"""
def __init__(
self,
concat_keys: tuple,
finetune_keys=(
"model.diffusion_model.input_blocks.0.0.weight",
"model_ema.diffusion_modelinput_blocks00weight",
),
keep_finetune_dims=4,
# if model was trained without concat mode before and we would like to keep these channels
c_concat_log_start=None, # to log reconstruction of c_concat codes
c_concat_log_end=None,
**kwargs,
):
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(**kwargs)
self.finetune_keys = finetune_keys
self.concat_keys = concat_keys
self.keep_dims = keep_finetune_dims
self.c_concat_log_start = c_concat_log_start
self.c_concat_log_end = c_concat_log_end
if self.finetune_keys is not None:
assert ckpt_path is not None, "can only finetune from a given checkpoint"
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
def init_from_ckpt(self, path, ignore_keys=(), only_model=False):
sd = torch.load(path, map_location="cpu")
return self.init_from_state_dict(
sd, ignore_keys=ignore_keys, only_model=only_model
)
def init_from_state_dict(self, sd, ignore_keys=(), only_model=False):
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {k} from state_dict.")
del sd[k]
# make it explicit, finetune by including extra input channels
if self.finetune_keys is not None and k in self.finetune_keys:
new_entry = None
for name, param in self.named_parameters():
if name in self.finetune_keys:
print(
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only"
)
new_entry = torch.zeros_like(param) # zero init
assert (
new_entry is not None
), "did not find matching parameter to modify"
new_entry[:, : self.keep_dims, ...] = sd[k]
sd[k] = new_entry
missing, unexpected = (
self.load_state_dict(sd, strict=False)
if not only_model
else self.model.load_state_dict(sd, strict=False)
)
# print(
# f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
# )
# if len(missing) > 0:
# print(f"Missing Keys: {missing}")
# if len(unexpected) > 0:
# print(f"Unexpected Keys: {unexpected}")
@torch.no_grad()
def log_images(
self,
batch,
N=8,
n_row=4,
sample=True,
ddim_steps=200,
ddim_eta=1.0,
return_keys=None,
quantize_denoised=True,
inpaint=True,
plot_denoise_rows=False,
plot_progressive_rows=True,
plot_diffusion_rows=True,
unconditional_guidance_scale=1.0,
unconditional_guidance_label=None,
use_ema_scope=True,
**kwargs,
):
ema_scope = self.ema_scope if use_ema_scope else nullcontext
use_ddim = ddim_steps is not None
log = {}
z, c, x, xrec, xc = self.get_input(
batch, self.first_stage_key, bs=N, return_first_stage_outputs=True
)
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log["inputs"] = x
log["reconstruction"] = xrec
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, "decode"):
xc = self.cond_stage_model.decode(c)
log["conditioning"] = xc
elif self.cond_stage_key in ["caption", "txt"]:
# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
log["conditioning"] = xc
elif self.cond_stage_key in ["class_label", "cls"]:
# xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
log["conditioning"] = xc
elif isimage(xc):
log["conditioning"] = xc
if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc)
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
log["c_concat_decoded"] = self.decode_first_stage(
c_cat[:, self.c_concat_log_start : self.c_concat_log_end]
)
if plot_diffusion_rows:
# get diffusion row
diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
diffusion_grid = rearrange(diffusion_row, "n b c h w -> b n c h w")
diffusion_grid = rearrange(diffusion_grid, "b n c h w -> (b n) c h w")
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
log["diffusion_row"] = diffusion_grid
if sample:
# get denoise row
with ema_scope("Sampling"):
samples, z_denoise_row = self.sample_log(
cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
x_samples = self.decode_first_stage(samples)
log["samples"] = x_samples
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log["denoise_row"] = denoise_grid
if unconditional_guidance_scale > 1.0:
uc_cross = self.get_unconditional_conditioning(
N, unconditional_guidance_label
)
uc_cat = c_cat
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
with ema_scope("Sampling with classifier-free guidance"):
samples_cfg, _ = self.sample_log(
cond={"c_concat": [c_cat], "c_crossattn": [c]},
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=uc_full,
)
x_samples_cfg = self.decode_first_stage(samples_cfg)
log[
f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"
] = x_samples_cfg
return log
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
finetune_keys=None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
@torch.no_grad()
def get_input(
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
):
# note: restricted to non-trainable encoders currently
assert (
not self.cond_stage_trainable
), "trainable cond stages not yet supported for inpainting"
z, c, x, xrec, xc = super().get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=bs,
)
assert self.concat_keys is not None
c_cat = []
for ck in self.concat_keys:
cc = (
rearrange(batch[ck], "b h w c -> b c h w")
.to(memory_format=torch.contiguous_format)
.float()
)
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
bchw = z.shape
if ck != self.masked_image_key:
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
"""
condition on monocular depth estimation.
"""
def __init__(self, depth_stage_config, concat_keys=("midas_in",), **kwargs):
super().__init__(concat_keys=concat_keys, **kwargs)
self.depth_model = instantiate_from_config(depth_stage_config)
self.depth_stage_key = concat_keys[0]
@torch.no_grad()
def get_input(
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
):
# note: restricted to non-trainable encoders currently
assert (
not self.cond_stage_trainable
), "trainable cond stages not yet supported for depth2img"
z, c, x, xrec, xc = super().get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=bs,
)
assert self.concat_keys is not None
assert len(self.concat_keys) == 1
c_cat = []
for ck in self.concat_keys:
cc = batch[ck]
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
cc = self.depth_model(cc)
cc = torch.nn.functional.interpolate(
cc,
size=z.shape[2:],
mode="bicubic",
align_corners=False,
)
depth_min, depth_max = torch.amin(
cc, dim=[1, 2, 3], keepdim=True
), torch.amax(cc, dim=[1, 2, 3], keepdim=True)
cc = 2.0 * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.0
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
@torch.no_grad()
def log_images(self, *args, **kwargs):
log = super().log_images(*args, **kwargs)
depth = self.depth_model(args[0][self.depth_stage_key])
depth_min, depth_max = torch.amin(
depth, dim=[1, 2, 3], keepdim=True
), torch.amax(depth, dim=[1, 2, 3], keepdim=True)
log["depth"] = 2.0 * (depth - depth_min) / (depth_max - depth_min) - 1.0
return log
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
"""
condition on low-res image (and optionally on some spatial noise augmentation).
"""
def __init__(
self,
concat_keys=("lr",),
reshuffle_patch_size=None,
low_scale_config=None,
low_scale_key=None,
**kwargs,
):
super().__init__(concat_keys=concat_keys, **kwargs)
self.reshuffle_patch_size = reshuffle_patch_size
self.low_scale_model = None
if low_scale_config is not None:
print("Initializing a low-scale model")
assert low_scale_key is not None
self.instantiate_low_stage(low_scale_config)
self.low_scale_key = low_scale_key
def instantiate_low_stage(self, config):
model = instantiate_from_config(config)
self.low_scale_model = model.eval()
self.low_scale_model.train = disabled_train
for param in self.low_scale_model.parameters():
param.requires_grad = False
@torch.no_grad()
def get_input(
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
):
# note: restricted to non-trainable encoders currently
assert (
not self.cond_stage_trainable
), "trainable cond stages not yet supported for upscaling-ft"
z, c, x, xrec, xc = super().get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=bs,
)
assert self.concat_keys is not None
assert len(self.concat_keys) == 1
# optionally make spatial noise_level here
c_cat = []
noise_level = None
for ck in self.concat_keys:
cc = batch[ck]
cc = rearrange(cc, "b h w c -> b c h w")
if self.reshuffle_patch_size is not None:
assert isinstance(self.reshuffle_patch_size, int)
cc = rearrange(
cc,
"b c (p1 h) (p2 w) -> b (p1 p2 c) h w",
p1=self.reshuffle_patch_size,
p2=self.reshuffle_patch_size,
)
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
if self.low_scale_model is not None and ck == self.low_scale_key:
cc, noise_level = self.low_scale_model(cc)
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
if noise_level is not None:
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
else:
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds
@torch.no_grad()
def log_images(self, *args, **kwargs):
log = super().log_images(*args, **kwargs)
log["lr"] = rearrange(args[0]["lr"], "b h w c -> b c h w")
return log