mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
666 lines
23 KiB
Python
666 lines
23 KiB
Python
"""Classes for image autoencoding and manipulation"""
|
|
|
|
# pylama:ignore=W0613
|
|
import logging
|
|
import math
|
|
from contextlib import contextmanager
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from torch.cuda import OutOfMemoryError
|
|
|
|
from imaginairy.modules.diffusion.model import Decoder, Encoder
|
|
from imaginairy.modules.distributions import DiagonalGaussianDistribution
|
|
from imaginairy.modules.ema import LitEma
|
|
from imaginairy.utils import instantiate_from_config
|
|
from imaginairy.utils.feather_tile import rebuild_image, tile_image
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AutoencoderKL(pl.LightningModule):
|
|
def __init__(
|
|
self,
|
|
ddconfig,
|
|
lossconfig,
|
|
embed_dim,
|
|
ckpt_path=None,
|
|
ignore_keys=None,
|
|
image_key="image",
|
|
colorize_nlabels=None,
|
|
monitor=None,
|
|
ema_decay=None,
|
|
learn_logvar=False,
|
|
):
|
|
super().__init__()
|
|
self.learn_logvar = learn_logvar
|
|
self.image_key = image_key
|
|
self.encoder = Encoder(**ddconfig)
|
|
self.decoder = Decoder(**ddconfig)
|
|
self.loss = instantiate_from_config(lossconfig)
|
|
assert ddconfig["double_z"]
|
|
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
|
self.embed_dim = embed_dim
|
|
if colorize_nlabels is not None:
|
|
assert isinstance(colorize_nlabels, int)
|
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
|
if monitor is not None:
|
|
self.monitor = monitor
|
|
|
|
self.use_ema = ema_decay is not None
|
|
if self.use_ema:
|
|
self.ema_decay = ema_decay
|
|
assert 0.0 < ema_decay < 1.0
|
|
self.model_ema = LitEma(self, decay=ema_decay)
|
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
|
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
|
|
|
ks = 128
|
|
stride = 64
|
|
vqf = 8
|
|
self.split_input_params = {
|
|
"ks": (ks, ks),
|
|
"stride": (stride, stride),
|
|
"vqf": vqf,
|
|
"patch_distributed_vq": True,
|
|
"tie_braker": False,
|
|
"clip_max_weight": 0.5,
|
|
"clip_min_weight": 0.01,
|
|
"clip_max_tie_weight": 0.5,
|
|
"clip_min_tie_weight": 0.01,
|
|
}
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=None):
|
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
|
keys = list(sd.keys())
|
|
ignore_keys = [] if ignore_keys is None else ignore_keys
|
|
for k in keys:
|
|
for ik in ignore_keys:
|
|
if k.startswith(ik):
|
|
print(f"Deleting key {k} from state_dict.")
|
|
del sd[k]
|
|
self.load_state_dict(sd, strict=False)
|
|
print(f"Restored from {path}")
|
|
|
|
@contextmanager
|
|
def ema_scope(self, context=None):
|
|
if self.use_ema:
|
|
self.model_ema.store(self.parameters())
|
|
self.model_ema.copy_to(self)
|
|
if context is not None:
|
|
print(f"{context}: Switched to EMA weights")
|
|
try:
|
|
yield None
|
|
finally:
|
|
if self.use_ema:
|
|
self.model_ema.restore(self.parameters())
|
|
if context is not None:
|
|
print(f"{context}: Restored training weights")
|
|
|
|
def on_train_batch_end(self, *args, **kwargs):
|
|
if self.use_ema:
|
|
self.model_ema(self)
|
|
|
|
def encode(self, x):
|
|
return self.encode_sliced(x)
|
|
|
|
def encode_all_at_once(self, x):
|
|
h = self.encoder(x)
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
return posterior.mode()
|
|
|
|
def encode_sliced(self, x, chunk_size=128 * 8):
|
|
"""
|
|
encodes the image in slices.
|
|
"""
|
|
b, c, h, w = x.size()
|
|
final_tensor = torch.zeros(
|
|
[1, 4, math.ceil(h / 8), math.ceil(w / 8)], device=x.device
|
|
)
|
|
for x_img in x.split(1):
|
|
encoded_chunks = []
|
|
overlap_pct = 0.5
|
|
chunks = tile_image(
|
|
x_img, tile_size=chunk_size, overlap_percent=overlap_pct
|
|
)
|
|
|
|
for img_chunk in chunks:
|
|
h = self.encoder(img_chunk)
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
encoded_chunks.append(posterior.sample())
|
|
final_tensor = rebuild_image(
|
|
encoded_chunks,
|
|
base_img=final_tensor,
|
|
tile_size=chunk_size // 8,
|
|
overlap_percent=overlap_pct,
|
|
)
|
|
|
|
return final_tensor
|
|
|
|
def encode_with_folds(self, x):
|
|
bs, nc, h, w = x.shape
|
|
ks = self.split_input_params["ks"] # eg. (128, 128)
|
|
stride = self.split_input_params["stride"] # eg. (64, 64)
|
|
df = self.split_input_params["vqf"]
|
|
|
|
if h > ks[0] * df or w > ks[1] * df:
|
|
self.split_input_params["original_image_size"] = x.shape[-2:]
|
|
orig_shape = x.shape
|
|
|
|
if ks[0] > h // df or ks[1] > w // df:
|
|
ks = (min(ks[0], h // df), min(ks[1], w // df))
|
|
logger.debug(f"reducing Kernel to {ks}")
|
|
|
|
if stride[0] > h // df or stride[1] > w // df:
|
|
stride = (min(stride[0], h // df), min(stride[1], w // df))
|
|
logger.debug("reducing stride")
|
|
bottom_pad = math.ceil(h / (ks[0] * df)) * (ks[0] * df) - h
|
|
right_pad = math.ceil(w / (ks[1] * df)) * (ks[1] * df) - w
|
|
|
|
padded_x = torch.zeros(
|
|
(bs, nc, h + bottom_pad, w + right_pad), device=x.device
|
|
)
|
|
padded_x[:, :, :h, :w] = x
|
|
x = padded_x
|
|
|
|
fold, unfold, normalization, weighting = self.get_fold_unfold(
|
|
x, ks, stride, df=df
|
|
)
|
|
z = unfold(x) # (bn, nc * prod(**ks), L)
|
|
# Reshape to img shape
|
|
z = z.view(
|
|
(z.shape[0], -1, ks[0] * df, ks[1] * df, z.shape[-1])
|
|
) # (bn, nc, ks[0], ks[1], L )
|
|
|
|
output_list = [
|
|
self.encode_all_at_once(z[:, :, :, :, i]) for i in range(z.shape[-1])
|
|
]
|
|
|
|
o = torch.stack(output_list, axis=-1)
|
|
o = o * weighting
|
|
|
|
# Reverse reshape to img shape
|
|
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
|
# stitch crops together
|
|
encoded = fold(o)
|
|
encoded = encoded / normalization
|
|
# trim off padding
|
|
encoded = encoded[:, :, : orig_shape[2] // df, : orig_shape[3] // df]
|
|
|
|
return encoded
|
|
|
|
return self.encode_all_at_once(x)
|
|
|
|
def decode(self, z):
|
|
try:
|
|
return self.decode_all_at_once(z)
|
|
except OutOfMemoryError:
|
|
# Out of memory, trying sliced decoding.
|
|
try:
|
|
return self.decode_sliced(z, chunk_size=128)
|
|
except OutOfMemoryError:
|
|
return self.decode_sliced(z, chunk_size=64)
|
|
|
|
def decode_all_at_once(self, z):
|
|
z = self.post_quant_conv(z)
|
|
dec = self.decoder(z)
|
|
return dec
|
|
|
|
def decode_sliced(self, z, chunk_size=128):
|
|
"""
|
|
decodes the tensor in slices.
|
|
|
|
This results in images that don't exactly match, so we overlap, feather, and merge to reduce
|
|
(but not completely elminate) impact.
|
|
"""
|
|
b, c, h, w = z.size()
|
|
final_tensor = torch.zeros([1, 3, h * 8, w * 8], device=z.device)
|
|
for z_latent in z.split(1):
|
|
decoded_chunks = []
|
|
overlap_pct = 0.5
|
|
chunks = tile_image(
|
|
z_latent, tile_size=chunk_size, overlap_percent=overlap_pct
|
|
)
|
|
|
|
for latent_chunk in chunks:
|
|
latent_chunk = self.post_quant_conv(latent_chunk)
|
|
dec = self.decoder(latent_chunk)
|
|
decoded_chunks.append(dec)
|
|
final_tensor = rebuild_image(
|
|
decoded_chunks,
|
|
base_img=final_tensor,
|
|
tile_size=chunk_size * 8,
|
|
overlap_percent=overlap_pct,
|
|
)
|
|
|
|
return final_tensor
|
|
|
|
def decode_with_folds(self, z):
|
|
ks = self.split_input_params["ks"] # eg. (128, 128)
|
|
stride = self.split_input_params["stride"] # eg. (64, 64)
|
|
uf = self.split_input_params["vqf"]
|
|
orig_shape = z.shape
|
|
bs, nc, h, w = z.shape
|
|
bottom_pad = math.ceil(h / ks[0]) * ks[0] - h
|
|
right_pad = math.ceil(w / ks[1]) * ks[1] - w
|
|
|
|
# pad the latent such that the unfolding will cover the whole image
|
|
padded_z = torch.zeros((bs, nc, h + bottom_pad, w + right_pad), device=z.device)
|
|
padded_z[:, :, :h, :w] = z
|
|
z = padded_z
|
|
|
|
bs, nc, h, w = z.shape
|
|
if ks[0] > h or ks[1] > w:
|
|
ks = (min(ks[0], h), min(ks[1], w))
|
|
logger.debug("reducing Kernel")
|
|
|
|
if stride[0] > h or stride[1] > w:
|
|
stride = (min(stride[0], h), min(stride[1], w))
|
|
logger.debug("reducing stride")
|
|
|
|
fold, unfold, normalization, weighting = self.get_fold_unfold(
|
|
z, ks, stride, uf=uf
|
|
)
|
|
|
|
z = unfold(z) # (bn, nc * prod(**ks), L)
|
|
# 1. Reshape to img shape
|
|
z = z.view(
|
|
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
|
|
) # (bn, nc, ks[0], ks[1], L )
|
|
|
|
# 2. apply model loop over last dim
|
|
|
|
output_list = [
|
|
self.decode_all_at_once(z[:, :, :, :, i]) for i in range(z.shape[-1])
|
|
]
|
|
|
|
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
|
o = o * weighting
|
|
# Reverse 1. reshape to img shape
|
|
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
|
# stitch crops together
|
|
decoded = fold(o)
|
|
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
|
# trim off padding
|
|
decoded = decoded[:, :, : orig_shape[2] * 8, : orig_shape[3] * 8]
|
|
return decoded
|
|
|
|
def forward(self, input, sample_posterior=True): # noqa
|
|
posterior = self.encode(input)
|
|
z = posterior.sample() if sample_posterior else posterior.mode()
|
|
dec = self.decode(z)
|
|
return dec, posterior
|
|
|
|
def get_input(self, batch, k):
|
|
x = batch[k]
|
|
if len(x.shape) == 3:
|
|
x = x[..., None]
|
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
|
return x
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
|
|
if optimizer_idx == 0:
|
|
# train encoder+decoder+logvar
|
|
aeloss, log_dict_ae = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
optimizer_idx,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="train",
|
|
)
|
|
self.log(
|
|
"aeloss",
|
|
aeloss,
|
|
prog_bar=True,
|
|
logger=True,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
)
|
|
self.log_dict(
|
|
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
|
)
|
|
return aeloss
|
|
|
|
if optimizer_idx == 1:
|
|
# train the discriminator
|
|
discloss, log_dict_disc = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
optimizer_idx,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="train",
|
|
)
|
|
|
|
self.log(
|
|
"discloss",
|
|
discloss,
|
|
prog_bar=True,
|
|
logger=True,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
)
|
|
self.log_dict(
|
|
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
|
)
|
|
return discloss
|
|
return None
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
log_dict = self._validation_step(batch, batch_idx)
|
|
with self.ema_scope():
|
|
log_dict_ema = self._validation_step( # noqa
|
|
batch, batch_idx, postfix="_ema"
|
|
)
|
|
return log_dict
|
|
|
|
def _validation_step(self, batch, batch_idx, postfix=""):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
aeloss, log_dict_ae = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
0,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="val" + postfix,
|
|
)
|
|
|
|
discloss, log_dict_disc = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
1,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="val" + postfix,
|
|
)
|
|
|
|
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
|
self.log_dict(log_dict_ae)
|
|
self.log_dict(log_dict_disc)
|
|
return self.log_dict
|
|
|
|
def configure_optimizers(self):
|
|
lr = self.learning_rate
|
|
ae_params_list = (
|
|
list(self.encoder.parameters())
|
|
+ list(self.decoder.parameters())
|
|
+ list(self.quant_conv.parameters())
|
|
+ list(self.post_quant_conv.parameters())
|
|
)
|
|
if self.learn_logvar:
|
|
print(f"{self.__class__.__name__}: Learning logvar")
|
|
ae_params_list.append(self.loss.logvar)
|
|
opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
|
|
opt_disc = torch.optim.Adam(
|
|
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
|
)
|
|
return [opt_ae, opt_disc], []
|
|
|
|
def get_last_layer(self):
|
|
return self.decoder.conv_out.weight
|
|
|
|
@torch.no_grad()
|
|
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
|
log = {}
|
|
x = self.get_input(batch, self.image_key)
|
|
x = x.to(self.device)
|
|
if not only_inputs:
|
|
xrec, posterior = self(x)
|
|
if x.shape[1] > 3:
|
|
# colorize with random projection
|
|
assert xrec.shape[1] > 3
|
|
x = self.to_rgb(x)
|
|
xrec = self.to_rgb(xrec)
|
|
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
|
log["reconstructions"] = xrec
|
|
if log_ema or self.use_ema:
|
|
with self.ema_scope():
|
|
xrec_ema, posterior_ema = self(x)
|
|
if x.shape[1] > 3:
|
|
# colorize with random projection
|
|
assert xrec_ema.shape[1] > 3
|
|
xrec_ema = self.to_rgb(xrec_ema)
|
|
log["samples_ema"] = self.decode(
|
|
torch.randn_like(posterior_ema.sample())
|
|
)
|
|
log["reconstructions_ema"] = xrec_ema
|
|
log["inputs"] = x
|
|
return log
|
|
|
|
def delta_border(self, h, w):
|
|
"""
|
|
:param h: height
|
|
:param w: width
|
|
:return: normalized distance to image border,
|
|
wtith min distance = 0 at border and max dist = 0.5 at image center
|
|
"""
|
|
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
|
arr = self.meshgrid(h, w) / lower_right_corner
|
|
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
|
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
|
edge_dist = torch.min(
|
|
torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
|
|
)[0]
|
|
return edge_dist
|
|
|
|
def get_weighting(self, h, w, Ly, Lx, device):
|
|
weighting = self.delta_border(h, w)
|
|
weighting = torch.clip(
|
|
weighting,
|
|
self.split_input_params["clip_min_weight"],
|
|
self.split_input_params["clip_max_weight"],
|
|
)
|
|
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
|
|
|
if self.split_input_params["tie_braker"]:
|
|
L_weighting = self.delta_border(Ly, Lx)
|
|
L_weighting = torch.clip(
|
|
L_weighting,
|
|
self.split_input_params["clip_min_tie_weight"],
|
|
self.split_input_params["clip_max_tie_weight"],
|
|
)
|
|
|
|
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
|
weighting = weighting * L_weighting
|
|
return weighting
|
|
|
|
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):
|
|
"""
|
|
:param x: img of size (bs, c, h, w)
|
|
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
|
"""
|
|
bs, nc, h, w = x.shape
|
|
|
|
# number of crops in image
|
|
Ly = (h - kernel_size[0]) // stride[0] + 1
|
|
Lx = (w - kernel_size[1]) // stride[1] + 1
|
|
|
|
if uf == 1 and df == 1:
|
|
fold_params = {
|
|
"kernel_size": kernel_size,
|
|
"dilation": 1,
|
|
"padding": 0,
|
|
"stride": stride,
|
|
}
|
|
unfold = torch.nn.Unfold(**fold_params)
|
|
|
|
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
|
|
|
weighting = self.get_weighting(
|
|
kernel_size[0], kernel_size[1], Ly, Lx, x.device
|
|
).to(x.dtype)
|
|
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
|
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
|
|
|
elif uf > 1 and df == 1:
|
|
fold_params = {
|
|
"kernel_size": kernel_size,
|
|
"dilation": 1,
|
|
"padding": 0,
|
|
"stride": stride,
|
|
}
|
|
unfold = torch.nn.Unfold(**fold_params)
|
|
|
|
fold_params2 = {
|
|
"kernel_size": (kernel_size[0] * uf, kernel_size[0] * uf),
|
|
"dilation": 1,
|
|
"padding": 0,
|
|
"stride": (stride[0] * uf, stride[1] * uf),
|
|
}
|
|
fold = torch.nn.Fold(
|
|
output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
|
|
)
|
|
|
|
weighting = self.get_weighting(
|
|
kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
|
|
).to(x.dtype)
|
|
normalization = fold(weighting).view(
|
|
1, 1, h * uf, w * uf
|
|
) # normalizes the overlap
|
|
weighting = weighting.view(
|
|
(1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
|
|
)
|
|
|
|
elif df > 1 and uf == 1:
|
|
Ly = (h - (kernel_size[0] * df)) // (stride[0] * df) + 1
|
|
Lx = (w - (kernel_size[1] * df)) // (stride[1] * df) + 1
|
|
|
|
unfold_params = {
|
|
"kernel_size": (kernel_size[0] * df, kernel_size[1] * df),
|
|
"dilation": 1,
|
|
"padding": 0,
|
|
"stride": (stride[0] * df, stride[1] * df),
|
|
}
|
|
|
|
unfold = torch.nn.Unfold(**unfold_params)
|
|
|
|
fold_params = {
|
|
"kernel_size": kernel_size,
|
|
"dilation": 1,
|
|
"padding": 0,
|
|
"stride": stride,
|
|
}
|
|
fold = torch.nn.Fold(
|
|
output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params
|
|
)
|
|
|
|
weighting = self.get_weighting(
|
|
kernel_size[0], kernel_size[1], Ly, Lx, x.device
|
|
).to(x.dtype)
|
|
normalization = fold(weighting).view(
|
|
1, 1, h // df, w // df
|
|
) # normalizes the overlap
|
|
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return fold, unfold, normalization, weighting
|
|
|
|
def meshgrid(self, h, w):
|
|
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
|
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
|
|
|
arr = torch.cat([y, x], dim=-1)
|
|
return arr
|
|
|
|
# def to_rgb(self, x):
|
|
# assert self.image_key == "segmentation"
|
|
# if not hasattr(self, "colorize"):
|
|
# self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
|
# x = F.conv2d(x, weight=self.colorize)
|
|
# x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
|
# return x
|
|
|
|
|
|
class IdentityFirstStage(torch.nn.Module):
|
|
def __init__(self, *args, vq_interface=False, **kwargs):
|
|
self.vq_interface = vq_interface
|
|
super().__init__()
|
|
|
|
def encode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def decode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def quantize(self, x, *args, **kwargs):
|
|
if self.vq_interface:
|
|
return x, None, [None, None, None]
|
|
return x
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
|
|
def chunk_latent(tensor, chunk_size=64, overlap_size=8):
|
|
# Get the shape of the tensor
|
|
batch_size, num_channels, height, width = tensor.shape
|
|
|
|
# Calculate the number of chunks along each dimension
|
|
num_rows = int(math.ceil(height / chunk_size))
|
|
num_cols = int(math.ceil(width / chunk_size))
|
|
|
|
# Initialize a list to store the chunks
|
|
chunks = []
|
|
|
|
# Loop over the rows and columns
|
|
for row in range(num_rows):
|
|
for col in range(num_cols):
|
|
# Calculate the start and end indices for the chunk along each dimension
|
|
row_start = max(row * chunk_size - overlap_size, 0)
|
|
row_end = min(row_start + chunk_size + overlap_size, height)
|
|
col_start = max(col * chunk_size - overlap_size, 0)
|
|
col_end = min(col_start + chunk_size + overlap_size, width)
|
|
|
|
# Extract the chunk from the tensor and append it to the list of chunks
|
|
chunk = tensor[:, :, row_start:row_end, col_start:col_end]
|
|
chunks.append((chunk, row_start, col_start))
|
|
|
|
return chunks, num_rows, num_cols
|
|
|
|
|
|
def merge_tensors(tensor_list, num_rows, num_cols):
|
|
print(f"num_rows: {num_rows}")
|
|
print(f"num_cols: {num_cols}")
|
|
n, channel, h, w = tensor_list[0].size()
|
|
assert n == 1
|
|
final_width = 0
|
|
final_height = 0
|
|
for col_idx in range(num_cols):
|
|
final_width += tensor_list[col_idx].size()[3]
|
|
|
|
for row_idx in range(num_rows):
|
|
final_height += tensor_list[row_idx * num_cols].size()[2]
|
|
|
|
final_tensor = torch.zeros([1, channel, final_height, final_width])
|
|
print(f"final size {final_tensor.size()}")
|
|
for row_idx in range(num_rows):
|
|
for col_idx in range(num_cols):
|
|
list_idx = row_idx * num_cols + col_idx
|
|
chunk = tensor_list[list_idx]
|
|
print(f"chunk size: {chunk.size()}")
|
|
_, _, chunk_h, chunk_w = chunk.size()
|
|
final_tensor[
|
|
:,
|
|
:,
|
|
row_idx * h : row_idx * h + chunk_h,
|
|
col_idx * w : col_idx * w + chunk_w,
|
|
] = chunk
|
|
|
|
return final_tensor
|