imaginAIry/imaginairy/api.py

338 lines
13 KiB
Python
Executable File

import logging
import os
import re
from functools import lru_cache
import numpy as np
import torch
import torch.nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from pytorch_lightning import seed_everything
from transformers import cached_path
from imaginairy.enhancers.clip_masking import get_img_mask
from imaginairy.enhancers.describe_image_blip import generate_caption
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
from imaginairy.enhancers.upscale_realesrgan import upscale_image
from imaginairy.img_log import (
ImageLoggingContext,
log_conditioning,
log_img,
log_latent,
)
from imaginairy.safety import is_nsfw
from imaginairy.samplers.base import get_sampler
from imaginairy.schema import ImaginePrompt, ImagineResult
from imaginairy.utils import (
expand_mask,
fix_torch_group_norm,
fix_torch_nn_layer_norm,
get_device,
instantiate_from_config,
pillow_fit_image_within,
pillow_img_to_torch_image,
platform_appropriate_autocast,
)
LIB_PATH = os.path.dirname(__file__)
logger = logging.getLogger(__name__)
class SafetyMode:
DISABLED = "disabled"
CLASSIFY = "classify"
FILTER = "filter"
# leave undocumented. I'd ask that no one publicize this flag. Just want a
# slight barrier to entry. Please don't use this is any way that's gonna cause
# the press or governments to freak out about AI...
IMAGINAIRY_SAFETY_MODE = os.getenv("IMAGINAIRY_SAFETY_MODE", SafetyMode.FILTER)
def load_model_from_config(config):
url = "https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media"
ckpt_path = cached_path(url)
logger.info(f"Loading model onto {get_device()} backend...")
logger.debug(f"Loading model from {ckpt_path}")
pl_sd = torch.load(ckpt_path, map_location="cpu")
if "global_step" in pl_sd:
logger.debug(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0:
logger.debug(f"missing keys: {m}")
if len(u) > 0:
logger.debug(f"unexpected keys: {u}")
model.to(get_device())
model.eval()
return model
@lru_cache()
def load_model():
config = "configs/stable-diffusion-v1.yaml"
config = OmegaConf.load(f"{LIB_PATH}/{config}")
model = load_model_from_config(config)
model = model.to(get_device())
return model
def imagine_image_files(
prompts,
outdir,
latent_channels=4,
downsampling_factor=8,
precision="autocast",
ddim_eta=0.0,
record_step_images=False,
output_file_extension="jpg",
print_caption=False,
):
big_path = os.path.join(outdir, "upscaled")
os.makedirs(outdir, exist_ok=True)
base_count = len(os.listdir(outdir))
output_file_extension = output_file_extension.lower()
if output_file_extension not in {"jpg", "png"}:
raise ValueError("Must output a png or jpg")
def _record_step(img, description, step_count, prompt):
steps_path = os.path.join(outdir, "steps", f"{base_count:08}_S{prompt.seed}")
os.makedirs(steps_path, exist_ok=True)
filename = f"{base_count:08}_S{prompt.seed}_step{step_count:04}_{prompt_normalized(description)[:40]}.jpg"
destination = os.path.join(steps_path, filename)
draw = ImageDraw.Draw(img)
draw.text((10, 10), str(description))
img.save(destination)
for result in imagine(
prompts,
latent_channels=latent_channels,
downsampling_factor=downsampling_factor,
precision=precision,
ddim_eta=ddim_eta,
img_callback=_record_step if record_step_images else None,
add_caption=print_caption,
):
prompt = result.prompt
basefilename = f"{base_count:06}_{prompt.seed}_{prompt.sampler_type}{prompt.steps}_PS{prompt.prompt_strength}_{prompt_normalized(prompt.prompt_text)}"
filepath = os.path.join(outdir, f"{basefilename}.jpg")
result.save(filepath)
logger.info(f" 🖼 saved to: {filepath}")
if result.upscaled_img:
os.makedirs(big_path, exist_ok=True)
bigfilepath = os.path.join(big_path, basefilename) + "_upscaled.jpg"
result.save_upscaled(bigfilepath)
logger.info(f" Upscaled 🖼 saved to: {bigfilepath}")
base_count += 1
del result
def imagine(
prompts,
latent_channels=4,
downsampling_factor=8,
precision="autocast",
ddim_eta=0.0,
img_callback=None,
half_mode=None,
add_caption=False,
):
model = load_model()
# only run half-mode on cuda. run it by default
half_mode = half_mode is None and get_device() == "cuda"
if half_mode:
model = model.half()
# needed when model is in half mode, remove if not using half mode
# torch.set_default_tensor_type(torch.HalfTensor)
prompts = [ImaginePrompt(prompts)] if isinstance(prompts, str) else prompts
prompts = [prompts] if isinstance(prompts, ImaginePrompt) else prompts
_img_callback = None
if get_device() == "cpu":
logger.info("Running in CPU mode. it's gonna be slooooooow.")
with torch.no_grad(), platform_appropriate_autocast(
precision
), fix_torch_nn_layer_norm(), fix_torch_group_norm():
for prompt in prompts:
with ImageLoggingContext(
prompt=prompt,
model=model,
img_callback=img_callback,
):
logger.info(f"Generating {prompt.prompt_description()}")
seed_everything(prompt.seed)
model.tile_mode(prompt.tile_mode)
uc = None
if prompt.prompt_strength != 1.0:
uc = model.get_learned_conditioning(1 * [""])
log_conditioning(uc, "neutral conditioning")
if prompt.conditioning is not None:
c = prompt.conditioning
else:
total_weight = sum(wp.weight for wp in prompt.prompts)
c = sum(
model.get_learned_conditioning(wp.text)
* (wp.weight / total_weight)
for wp in prompt.prompts
)
log_conditioning(c, "positive conditioning")
shape = [
latent_channels,
prompt.height // downsampling_factor,
prompt.width // downsampling_factor,
]
if prompt.init_image and prompt.sampler_type not in ("ddim", "plms"):
sampler_type = "plms"
logger.info(" Sampler type switched to plms for img2img")
else:
sampler_type = prompt.sampler_type
start_code = None
sampler = get_sampler(sampler_type, model)
mask, mask_image, mask_image_orig = None, None, None
if prompt.init_image:
generation_strength = 1 - prompt.init_image_strength
ddim_steps = int(prompt.steps / generation_strength)
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta)
init_image, _, h = pillow_fit_image_within(
prompt.init_image,
max_height=prompt.height,
max_width=prompt.width,
)
init_image_t = pillow_img_to_torch_image(init_image)
if prompt.mask_prompt:
mask_image = get_img_mask(init_image, prompt.mask_prompt)
elif prompt.mask_image:
mask_image = prompt.mask_image
if mask_image is not None:
log_img(mask_image, "init mask")
mask_image = expand_mask(mask_image, prompt.mask_expansion)
log_img(mask_image, "init mask expanded")
if prompt.mask_mode == ImaginePrompt.MaskMode.REPLACE:
mask_image = ImageOps.invert(mask_image)
log_img(
Image.composite(init_image, mask_image, mask_image),
"mask overlay",
)
mask_image_orig = mask_image
mask_image = mask_image.resize(
(
mask_image.width // downsampling_factor,
mask_image.height // downsampling_factor,
),
resample=Image.Resampling.NEAREST,
)
log_img(mask_image, "init mask 2")
mask = np.array(mask_image)
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.9] = 0
mask[mask >= 0.9] = 1
mask = torch.from_numpy(mask)
mask = mask.to(get_device())
init_image_t = init_image_t.to(get_device())
init_latent = model.get_first_stage_encoding(
model.encode_first_stage(init_image_t)
)
log_latent(init_latent, "init_latent")
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
init_latent,
torch.tensor([prompt.steps]).to(get_device()),
)
log_latent(z_enc, "z_enc")
# decode it
samples = sampler.decode(
z_enc,
c,
prompt.steps,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
img_callback=_img_callback,
mask=mask,
orig_latent=init_latent,
)
else:
samples = sampler.sample(
num_steps=prompt.steps,
conditioning=c,
batch_size=1,
shape=shape,
unconditional_guidance_scale=prompt.prompt_strength,
unconditional_conditioning=uc,
eta=ddim_eta,
initial_noise_tensor=start_code,
img_callback=_img_callback,
)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples:
x_sample = 255.0 * rearrange(
x_sample.cpu().numpy(), "c h w -> h w c"
)
x_sample_8_orig = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample_8_orig)
if mask_image_orig and init_image:
mask_image_orig = expand_mask(mask_image_orig, -3)
mask_image_orig = mask_image_orig.filter(
ImageFilter.GaussianBlur(radius=3)
)
log_img(mask_image_orig, "reconstituting mask")
mask_image_orig = ImageOps.invert(mask_image_orig)
img = Image.composite(img, init_image, mask_image_orig)
log_img(img, "reconstituted image")
upscaled_img = None
is_nsfw_img = None
if add_caption:
caption = generate_caption(img)
logger.info(f" Generated caption: {caption}")
if IMAGINAIRY_SAFETY_MODE != SafetyMode.DISABLED:
is_nsfw_img = is_nsfw(img, x_sample)
if is_nsfw_img and IMAGINAIRY_SAFETY_MODE == SafetyMode.FILTER:
logger.info(" ⚠️ Filtering NSFW image")
img = img.filter(ImageFilter.GaussianBlur(radius=40))
if prompt.fix_faces:
logger.info(" Fixing 😊 's in 🖼 using CodeFormer...")
img = enhance_faces(img, fidelity=0.2)
if prompt.upscale:
logger.info(" Upscaling 🖼 using real-ESRGAN...")
upscaled_img = upscale_image(img)
if prompt.fix_faces:
logger.info(" Fixing 😊 's in big 🖼 using CodeFormer...")
upscaled_img = enhance_faces(upscaled_img, fidelity=0.8)
yield ImagineResult(
img=img,
prompt=prompt,
upscaled_img=upscaled_img,
is_nsfw=is_nsfw_img,
)
def prompt_normalized(prompt):
return re.sub(r"[^a-zA-Z0-9.,]+", "_", prompt)[:130]