mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-09 13:10:27 +00:00
95a8fa31a9
while the previous version did produce much better blending it also makes images that lack detail for some reason. tests: Added more tests to help catch this sort of thing earlies fix: found that median blur is really slow, so I made sure we only do it on downsampled masks. Was taking like 3 minutes to run on the large pearl girl picture on M1 - docs: update examples
468 lines
16 KiB
Python
468 lines
16 KiB
Python
# pylama:ignore=W0613
|
|
"""SAMPLING ONLY."""
|
|
import logging
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from imaginairy.img_log import log_latent
|
|
from imaginairy.modules.diffusion.util import (
|
|
extract_into_tensor,
|
|
make_ddim_sampling_parameters,
|
|
make_ddim_timesteps,
|
|
noise_like,
|
|
)
|
|
from imaginairy.utils import get_device
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PLMSSampler:
|
|
"""probabilistic least-mean-squares"""
|
|
|
|
def __init__(self, model):
|
|
self.model = model
|
|
self.ddpm_num_timesteps = model.num_timesteps
|
|
self.device_available = get_device()
|
|
self.ddim_timesteps = None
|
|
|
|
def register_buffer(self, name, attr):
|
|
if isinstance(attr, torch.Tensor):
|
|
if attr.device != torch.device(self.device_available):
|
|
attr = attr.to(torch.float32).to(torch.device(self.device_available))
|
|
setattr(self, name, attr)
|
|
|
|
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0):
|
|
if ddim_eta != 0:
|
|
raise ValueError("ddim_eta must be 0 for PLMS")
|
|
self.ddim_timesteps = make_ddim_timesteps(
|
|
ddim_discr_method=ddim_discretize,
|
|
num_ddim_timesteps=ddim_num_steps,
|
|
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
|
)
|
|
alphas_cumprod = self.model.alphas_cumprod
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
def to_torch(x):
|
|
return x.clone().detach().to(torch.float32).to(self.model.device)
|
|
|
|
self.register_buffer("betas", to_torch(self.model.betas))
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
|
self.register_buffer(
|
|
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
|
)
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
self.register_buffer(
|
|
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_one_minus_alphas_cumprod",
|
|
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
|
)
|
|
self.register_buffer(
|
|
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
|
)
|
|
self.register_buffer(
|
|
"sqrt_recipm1_alphas_cumprod",
|
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
|
)
|
|
|
|
# ddim sampling parameters
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
|
alphacums=alphas_cumprod.cpu(),
|
|
ddim_timesteps=self.ddim_timesteps,
|
|
eta=ddim_eta,
|
|
)
|
|
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
|
self.register_buffer("ddim_alphas", ddim_alphas)
|
|
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
|
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
|
(1 - self.alphas_cumprod_prev)
|
|
/ (1 - self.alphas_cumprod)
|
|
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
|
)
|
|
self.register_buffer(
|
|
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def sample(
|
|
self,
|
|
num_steps,
|
|
batch_size,
|
|
shape,
|
|
conditioning=None,
|
|
callback=None,
|
|
normals_sequence=None,
|
|
img_callback=None,
|
|
quantize_x0=False,
|
|
eta=0.0,
|
|
mask=None,
|
|
x0=None,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
x_T=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
|
**kwargs,
|
|
):
|
|
if conditioning is not None:
|
|
if isinstance(conditioning, dict):
|
|
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
|
if cbs != batch_size:
|
|
logger.warning(
|
|
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
|
)
|
|
else:
|
|
if conditioning.shape[0] != batch_size:
|
|
logger.warning(
|
|
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
|
)
|
|
|
|
self.make_schedule(ddim_num_steps=num_steps, ddim_eta=eta)
|
|
|
|
samples = self.plms_sampling(
|
|
conditioning,
|
|
(batch_size, *shape),
|
|
callback=callback,
|
|
img_callback=img_callback,
|
|
quantize_denoised=quantize_x0,
|
|
mask=mask,
|
|
x0=x0,
|
|
ddim_use_original_steps=False,
|
|
noise_dropout=noise_dropout,
|
|
temperature=temperature,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
x_T=x_T,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
)
|
|
return samples
|
|
|
|
@torch.no_grad()
|
|
def plms_sampling(
|
|
self,
|
|
cond,
|
|
shape,
|
|
x_T=None,
|
|
ddim_use_original_steps=False,
|
|
callback=None,
|
|
timesteps=None,
|
|
quantize_denoised=False,
|
|
mask=None,
|
|
x0=None,
|
|
img_callback=None,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
):
|
|
device = self.model.betas.device
|
|
b = shape[0]
|
|
if x_T is None:
|
|
|
|
img = torch.randn(shape, device="cpu").to(device)
|
|
else:
|
|
img = x_T
|
|
log_latent(img, "initial img")
|
|
if timesteps is None:
|
|
timesteps = (
|
|
self.ddpm_num_timesteps
|
|
if ddim_use_original_steps
|
|
else self.ddim_timesteps
|
|
)
|
|
elif timesteps is not None and not ddim_use_original_steps:
|
|
subset_end = (
|
|
int(
|
|
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
|
* self.ddim_timesteps.shape[0]
|
|
)
|
|
- 1
|
|
)
|
|
timesteps = self.ddim_timesteps[:subset_end]
|
|
|
|
time_range = (
|
|
list(reversed(range(0, timesteps)))
|
|
if ddim_use_original_steps
|
|
else np.flip(timesteps)
|
|
)
|
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
|
logger.debug(f"Running PLMS Sampling with {total_steps} timesteps")
|
|
|
|
iterator = tqdm(time_range, desc=" PLMS Sampler", total=total_steps)
|
|
old_eps = []
|
|
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
|
ts_next = torch.full(
|
|
(b,),
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
device=device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if mask is not None:
|
|
assert x0 is not None
|
|
img_orig = self.model.q_sample(
|
|
x0, ts
|
|
) # TODO: deterministic forward pass?
|
|
img = img_orig * mask + (1.0 - mask) * img
|
|
|
|
img, pred_x0, e_t = self.p_sample_plms(
|
|
img,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
use_original_steps=ddim_use_original_steps,
|
|
quantize_denoised=quantize_denoised,
|
|
temperature=temperature,
|
|
noise_dropout=noise_dropout,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
old_eps=old_eps,
|
|
t_next=ts_next,
|
|
)
|
|
old_eps.append(e_t)
|
|
if len(old_eps) >= 4:
|
|
old_eps.pop(0)
|
|
if callback:
|
|
callback(i)
|
|
if img_callback:
|
|
img_callback(img, "img")
|
|
img_callback(pred_x0, "pred_x0")
|
|
|
|
return img
|
|
|
|
@torch.no_grad()
|
|
def p_sample_plms(
|
|
self,
|
|
x,
|
|
c,
|
|
t,
|
|
index,
|
|
repeat_noise=False,
|
|
use_original_steps=False,
|
|
quantize_denoised=False,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
old_eps=None,
|
|
t_next=None,
|
|
):
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
def get_model_output(x, t):
|
|
if (
|
|
unconditional_conditioning is None
|
|
or unconditional_guidance_scale == 1.0
|
|
):
|
|
e_t = self.model.apply_model(x, t, c)
|
|
else:
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([t] * 2)
|
|
c_in = torch.cat([unconditional_conditioning, c])
|
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
|
log_latent(e_t_uncond, "noise pred uncond")
|
|
log_latent(e_t, "noise pred cond")
|
|
|
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
log_latent(e_t, "noise pred combined")
|
|
|
|
if score_corrector is not None:
|
|
assert self.model.parameterization == "eps"
|
|
e_t = score_corrector.modify_score(
|
|
self.model, e_t, x, t, c, **corrector_kwargs
|
|
)
|
|
|
|
return e_t
|
|
|
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
|
alphas_prev = (
|
|
self.model.alphas_cumprod_prev
|
|
if use_original_steps
|
|
else self.ddim_alphas_prev
|
|
)
|
|
sqrt_one_minus_alphas = (
|
|
self.model.sqrt_one_minus_alphas_cumprod
|
|
if use_original_steps
|
|
else self.ddim_sqrt_one_minus_alphas
|
|
)
|
|
sigmas = (
|
|
self.model.ddim_sigmas_for_original_num_steps
|
|
if use_original_steps
|
|
else self.ddim_sigmas
|
|
)
|
|
|
|
def get_x_prev_and_pred_x0(e_t, index):
|
|
# select parameters corresponding to the currently considered timestep
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
|
sqrt_one_minus_at = torch.full(
|
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
|
)
|
|
|
|
# current prediction for x_0
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
if quantize_denoised:
|
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
|
# direction pointing to x_t
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
|
if noise_dropout > 0.0:
|
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
|
return x_prev, pred_x0
|
|
|
|
e_t = get_model_output(x, t)
|
|
|
|
if len(old_eps) == 0:
|
|
# Pseudo Improved Euler (2nd order)
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
|
e_t_next = get_model_output(x_prev, t_next)
|
|
e_t_prime = (e_t + e_t_next) / 2
|
|
elif len(old_eps) == 1:
|
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
|
elif len(old_eps) == 2:
|
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
|
elif len(old_eps) >= 3:
|
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (
|
|
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
|
|
) / 24
|
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
|
log_latent(x_prev, "x_prev")
|
|
log_latent(pred_x0, "pred_x0")
|
|
|
|
return x_prev, pred_x0, e_t
|
|
|
|
@torch.no_grad()
|
|
def stochastic_encode(self, init_latent, t, noise=None):
|
|
# fast, but does not allow for exact reconstruction
|
|
# t serves as an index to gather the correct alphas
|
|
t = t.clamp(0, 1000)
|
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
|
|
|
if noise is None:
|
|
noise = torch.randn_like(init_latent, device="cpu").to(get_device())
|
|
return (
|
|
extract_into_tensor(sqrt_alphas_cumprod, t, init_latent.shape) * init_latent
|
|
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, init_latent.shape)
|
|
* noise
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def decode(
|
|
self,
|
|
x_latent,
|
|
cond,
|
|
t_start,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
img_callback=None,
|
|
score_corrector=None,
|
|
temperature=1.0,
|
|
mask=None,
|
|
orig_latent=None,
|
|
noise=None,
|
|
):
|
|
|
|
timesteps = self.ddim_timesteps[:t_start]
|
|
|
|
time_range = np.flip(timesteps)
|
|
total_steps = timesteps.shape[0]
|
|
|
|
iterator = tqdm(time_range, desc="PLMS altering image", total=total_steps)
|
|
x_dec = x_latent
|
|
old_eps = []
|
|
log_latent(x_dec, "x_dec")
|
|
|
|
# not sure what the downside of using the same noise throughout the process would be...
|
|
# seems to work fine. maybe it runs faster?
|
|
noise = (
|
|
torch.randn_like(x_dec, device="cpu").to(x_dec.device)
|
|
if noise is None
|
|
else noise
|
|
)
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full(
|
|
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
|
)
|
|
ts_next = torch.full(
|
|
(x_latent.shape[0],),
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
device=x_latent.device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if mask is not None:
|
|
assert orig_latent is not None
|
|
xdec_orig = self.model.q_sample(orig_latent, ts, noise)
|
|
log_latent(xdec_orig, f"xdec_orig i={i} index-{index}")
|
|
# this helps prevent the weird disjointed images that can happen with masking
|
|
hint_strength = 0.8
|
|
if i < 2:
|
|
xdec_orig_with_hints = (
|
|
xdec_orig * (1 - hint_strength) + orig_latent * hint_strength
|
|
)
|
|
else:
|
|
xdec_orig_with_hints = xdec_orig
|
|
x_dec = xdec_orig_with_hints * mask + (1.0 - mask) * x_dec
|
|
log_latent(x_dec, f"x_dec {ts}")
|
|
|
|
x_dec, pred_x0, e_t = self.p_sample_plms(
|
|
x_dec,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
temperature=temperature,
|
|
old_eps=old_eps,
|
|
t_next=ts_next,
|
|
)
|
|
# original_loss = ((x_dec - x_latent).abs().mean()*70)
|
|
# sigma_t = torch.full((1, 1, 1, 1), self.ddim_sigmas[index], device=get_device())
|
|
# x_dec = x_dec.detach() + (original_loss * 0.1) ** 2
|
|
# cond_grad = -torch.autograd.grad(original_loss, x_dec)[0]
|
|
# x_dec = x_dec.detach() + cond_grad * sigma_t ** 2
|
|
# x_dec_alt = x_dec + (original_loss * 0.1) ** 2
|
|
|
|
old_eps.append(e_t)
|
|
if len(old_eps) >= 4:
|
|
old_eps.pop(0)
|
|
|
|
if img_callback:
|
|
img_callback(x_dec, "x_dec")
|
|
img_callback(pred_x0, "pred_x0")
|
|
|
|
log_latent(x_dec, f"x_dec {i}")
|
|
log_latent(x_dec, f"e_t {i}")
|
|
log_latent(pred_x0, f"pred_x0 {i}")
|
|
return x_dec
|