mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-17 09:25:47 +00:00
131 lines
3.9 KiB
Python
131 lines
3.9 KiB
Python
import itertools
|
|
|
|
import pytest
|
|
|
|
from imaginairy import LazyLoadingImage
|
|
from imaginairy.feather_tile import rebuild_image, tile_image, tile_setup
|
|
from imaginairy.img_utils import pillow_img_to_torch_image, torch_img_to_pillow_img
|
|
from tests import TESTS_FOLDER
|
|
|
|
img_ratios = [0.2, 0.242, 0.3, 0.33333333, 0.5, 0.75, 1, 4 / 3.0, 16 / 9.0, 2, 21 / 9.0]
|
|
pcts = [
|
|
0,
|
|
0.09,
|
|
0.1,
|
|
0.2,
|
|
0.25,
|
|
0.3,
|
|
1 / 3,
|
|
0.4,
|
|
0.5,
|
|
0.6,
|
|
0.7,
|
|
0.75,
|
|
0.8,
|
|
0.9,
|
|
1.0,
|
|
]
|
|
initial_sizes = [512]
|
|
flip = [True, False]
|
|
|
|
cases = [
|
|
(1, 256, 0),
|
|
(1, 256, 0.125),
|
|
(1, 256, 0.25),
|
|
(1, 256, 0.5),
|
|
(1, 128, 0),
|
|
(1, 128, 0.125),
|
|
(1, 128, 0.25),
|
|
(1, 128, 0.5),
|
|
(1, 512, 0),
|
|
(0.2, 46, 0.09),
|
|
(0.2, 46, 0.1),
|
|
(0.242, 46, 0.2),
|
|
(0.2, 51, 1 / 3.0),
|
|
(0.2, 102, 0.09), # tile size same as width of image
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("img_ratio, tile_size, overlap_pct", cases)
|
|
def test_feather_tile_simple(img_ratio, tile_size, overlap_pct):
|
|
img = pillow_img_to_torch_image(
|
|
LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bowl_of_fruit.jpg")
|
|
)
|
|
img = img[:, :, : img.shape[2], : int(img.shape[3] * img_ratio)]
|
|
img_sum = img.sum()
|
|
tiles = tile_image(img, tile_size=tile_size, overlap_percent=overlap_pct)
|
|
tile_coords, tile_size, overlap = tile_setup(
|
|
tile_size, overlap_pct, (img.size(2), img.size(3))
|
|
)
|
|
|
|
# print(
|
|
# f"tile_coords={tile_coords}, tile_size={tile_size}, overlap={overlap}, img.shape={img.shape}"
|
|
# )
|
|
|
|
rebuilt = rebuild_image(
|
|
tiles, base_img=img, tile_size=tile_size, overlap_percent=overlap_pct
|
|
)
|
|
assert rebuilt.shape == img.shape
|
|
diff = abs(float(rebuilt.sum()) - float(img_sum))
|
|
if diff >= 1:
|
|
torch_img_to_pillow_img(img).show()
|
|
torch_img_to_pillow_img(rebuilt).show()
|
|
torch_img_to_pillow_img(rebuilt - img).show()
|
|
|
|
assert diff < 1
|
|
|
|
|
|
def test_feather_tile_brute():
|
|
source_img = pillow_img_to_torch_image(
|
|
LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bowl_of_fruit.jpg")
|
|
)
|
|
|
|
def tile_untile(img, tile_size, overlap_percent):
|
|
img_sum = img.sum()
|
|
tiles = tile_image(img, tile_size=tile_size, overlap_percent=overlap_percent)
|
|
tile_coords, tile_size, overlap = tile_setup(
|
|
tile_size, overlap_percent, (img.size(2), img.size(3))
|
|
)
|
|
# print(
|
|
# f"tile_coords={tile_coords}, tile_size={tile_size}, overlap={overlap}, img.shape={img.shape}"
|
|
# )
|
|
|
|
rebuilt = rebuild_image(
|
|
tiles, base_img=img, tile_size=tile_size, overlap_percent=overlap_percent
|
|
)
|
|
assert rebuilt.shape == img.shape
|
|
diff = abs(float(rebuilt.sum()) - float(img_sum))
|
|
if diff > 1:
|
|
torch_img_to_pillow_img(img).show()
|
|
torch_img_to_pillow_img(rebuilt).show()
|
|
torch_img_to_pillow_img((rebuilt - img) * 20).show()
|
|
|
|
else:
|
|
pass
|
|
# print(
|
|
# f"{status}: img:{img.shape} tile_size={tile_size} overlap_percent={overlap_percent} diff={diff}"
|
|
# )
|
|
assert diff < 1
|
|
|
|
for tile_size_pct, overlap_percent, img_ratio, flip_ratio in itertools.product(
|
|
pcts, pcts, img_ratios, flip
|
|
):
|
|
if flip_ratio:
|
|
img = source_img.clone()[:, :, :, : int(source_img.shape[3] * img_ratio)]
|
|
else:
|
|
img = source_img.clone()[:, :, : int(source_img.shape[2] * img_ratio), :]
|
|
tile_size = int(source_img.shape[3] * tile_size_pct)
|
|
if not tile_size:
|
|
continue
|
|
|
|
if overlap_percent >= 0.5:
|
|
continue
|
|
|
|
# print(
|
|
# f"img_ratio={img_ratio}, tile_size_pct={tile_size_pct}, overlap_percent={overlap_percent}, tile_size={tile_size} img.shape={img.shape}"
|
|
# )
|
|
tile_untile(img, tile_size=tile_size, overlap_percent=overlap_percent)
|
|
del img
|
|
|
|
# tile_untile(img, tile_size=256, overlap_percent=0.25)
|