mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-09 13:10:27 +00:00
5cc73f6087
- feature: finetuning your own image models - feature: image prep command. crops to face or other interesting parts of photo - fix: back-compat for hf_hub_download - feature: add prune-ckpt command - feature: allow specification of model config file
471 lines
15 KiB
Python
471 lines
15 KiB
Python
import math
|
|
|
|
import psutil
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from torch import einsum, nn
|
|
|
|
from imaginairy.modules.diffusion.util import checkpoint as checkpoint_eval
|
|
from imaginairy.utils import get_device
|
|
|
|
try:
|
|
import xformers # noqa
|
|
import xformers.ops # noqa
|
|
|
|
XFORMERS_IS_AVAILBLE = True
|
|
except ImportError:
|
|
XFORMERS_IS_AVAILBLE = False
|
|
|
|
|
|
ALLOW_SPLITMEM = True
|
|
ATTENTION_PRECISION_OVERRIDE = "default"
|
|
|
|
|
|
class GEGLU(nn.Module):
|
|
def __init__(self, dim_in, dim_out):
|
|
super().__init__()
|
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
|
|
def forward(self, x):
|
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
return x * F.gelu(gate)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = dim_out if dim_out is not None else dim
|
|
project_in = (
|
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
|
if not glu
|
|
else GEGLU(dim, inner_dim)
|
|
)
|
|
|
|
self.net = nn.Sequential(
|
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
def Normalize(in_channels):
|
|
return torch.nn.GroupNorm(
|
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
|
|
|
|
class LinearAttention(nn.Module):
|
|
def __init__(self, dim, heads=4, dim_head=32):
|
|
super().__init__()
|
|
self.heads = heads
|
|
hidden_dim = dim_head * heads
|
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
|
|
|
def forward(self, x):
|
|
b, c, h, w = x.shape # noqa
|
|
qkv = self.to_qkv(x)
|
|
q, k, v = rearrange(
|
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
|
)
|
|
k = k.softmax(dim=-1)
|
|
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
|
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
|
out = rearrange(
|
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
|
)
|
|
return self.to_out(out)
|
|
|
|
|
|
class SpatialSelfAttention(nn.Module):
|
|
def __init__(self, in_channels):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels)
|
|
self.q = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.k = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.v = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
self.proj_out = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
h_ = x
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
# compute attention
|
|
b, c, h, w = q.shape # noqa
|
|
q = rearrange(q, "b c h w -> b (h w) c")
|
|
k = rearrange(k, "b c h w -> b c (h w)")
|
|
w_ = torch.einsum("bij,bjk->bik", q, k)
|
|
|
|
w_ = w_ * (int(c) ** (-0.5))
|
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
|
|
|
# attend to values
|
|
v = rearrange(v, "b c h w -> b c (h w)")
|
|
w_ = rearrange(w_, "b i j -> b j i")
|
|
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
|
h_ = self.proj_out(h_)
|
|
|
|
return x + h_
|
|
|
|
|
|
def get_mem_free_total(device):
|
|
device_type = "mps" if device.type == "mps" else "cuda"
|
|
if device_type == "cuda":
|
|
stats = torch.cuda.memory_stats(device)
|
|
mem_active = stats["active_bytes.all.current"]
|
|
mem_reserved = stats["reserved_bytes.all.current"]
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
|
|
mem_free_torch = mem_reserved - mem_active
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
mem_free_total *= 0.9
|
|
else:
|
|
# if we don't add a buffer, larger images come out as noise
|
|
mem_free_total = psutil.virtual_memory().available * 0.6
|
|
|
|
return mem_free_total
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
context_dim = context_dim if context_dim is not None else query_dim
|
|
|
|
self.scale = dim_head**-0.5
|
|
self.heads = heads
|
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x, context=None, mask=None):
|
|
# from imaginairy.api import _global_mask_hack
|
|
#
|
|
# if mask is None and _global_mask_hack is not None:
|
|
# mask = _global_mask_hack.to(torch.bool)
|
|
|
|
if get_device() == "cuda" or "mps" in get_device():
|
|
if not XFORMERS_IS_AVAILBLE and ALLOW_SPLITMEM:
|
|
return self.forward_splitmem(x, context=context, mask=mask)
|
|
|
|
h = self.heads
|
|
# print(x.shape)
|
|
|
|
q = self.to_q(x)
|
|
context = context if context is not None else x
|
|
k = self.to_k(context) * self.scale
|
|
v = self.to_v(context)
|
|
|
|
q, k, v = (rearrange(t, "b n (h d) -> (b h) n d", h=h) for t in (q, k, v))
|
|
|
|
# force cast to fp32 to avoid overflowing
|
|
if ATTENTION_PRECISION_OVERRIDE == "fp32":
|
|
with torch.autocast(enabled=False, device_type=get_device()):
|
|
q, k = q.float(), k.float()
|
|
sim = einsum("b i d, b j d -> b i j", q, k)
|
|
else:
|
|
sim = einsum("b i d, b j d -> b i j", q, k)
|
|
# print(sim.shape)
|
|
# print("*" * 100)
|
|
del q, k
|
|
# if mask is not None:
|
|
# if sim.shape[2] == 320 and False:
|
|
# mask = [mask] * 2
|
|
# mask = rearrange(mask, "b ... -> b (...)")
|
|
# _max_neg_value = -torch.finfo(sim.dtype).max
|
|
# mask = repeat(mask, "b j -> (b h) () j", h=h)
|
|
# sim.masked_fill_(~mask, _max_neg_value)
|
|
|
|
# attention, what we cannot get enough of
|
|
attn = sim.softmax(dim=-1)
|
|
|
|
out = einsum("b i j, b j d -> b i d", attn, v)
|
|
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
|
return self.to_out(out)
|
|
|
|
def forward_splitmem(self, x, context=None, mask=None): # noqa
|
|
h = self.heads
|
|
|
|
q_in = self.to_q(x)
|
|
context = context if context is not None else x
|
|
k_in = self.to_k(context) * self.scale
|
|
v_in = self.to_v(context)
|
|
del context, x
|
|
|
|
q, k, v = (
|
|
rearrange(t, "b n (h d) -> (b h) n d", h=h) for t in (q_in, k_in, v_in)
|
|
)
|
|
del q_in, k_in, v_in
|
|
|
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
|
|
|
mem_free_total = get_mem_free_total(q.device)
|
|
|
|
gb = 1024**3
|
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
|
|
modifier = 3 if q.element_size() == 2 else 2.5
|
|
mem_required = tensor_size * modifier
|
|
steps = 1
|
|
|
|
if mem_required > mem_free_total:
|
|
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
|
|
|
|
if steps > 64:
|
|
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
|
raise RuntimeError(
|
|
f"Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). "
|
|
f"Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free"
|
|
)
|
|
|
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
|
for i in range(0, q.shape[1], slice_size):
|
|
end = i + slice_size
|
|
|
|
# force cast to fp32 to avoid overflowing
|
|
if ATTENTION_PRECISION_OVERRIDE == "fp32":
|
|
with torch.autocast(enabled=False, device_type=get_device()):
|
|
q, k = q.float(), k.float()
|
|
s1 = einsum("b i d, b j d -> b i j", q[:, i:end], k)
|
|
else:
|
|
s1 = einsum("b i d, b j d -> b i j", q[:, i:end], k)
|
|
|
|
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
|
del s1
|
|
|
|
r1[:, i:end] = einsum("b i j, b j d -> b i d", s2, v)
|
|
del s2
|
|
|
|
del q, k, v
|
|
|
|
r2 = rearrange(r1, "(b h) n d -> b n (h d)", h=h)
|
|
del r1
|
|
|
|
return self.to_out(r2)
|
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module):
|
|
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
|
super().__init__()
|
|
# print(
|
|
# f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
|
# f"{heads} heads."
|
|
# )
|
|
inner_dim = dim_head * heads
|
|
context_dim = context_dim if context_dim is not None else query_dim
|
|
|
|
self.heads = heads
|
|
self.dim_head = dim_head
|
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
|
)
|
|
self.attention_op = None
|
|
|
|
def forward(self, x, context=None, mask=None):
|
|
q = self.to_q(x)
|
|
context = context if context is not None else x
|
|
k = self.to_k(context)
|
|
v = self.to_v(context)
|
|
|
|
b, _, _ = q.shape
|
|
q, k, v = (
|
|
t.unsqueeze(3)
|
|
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
|
.contiguous()
|
|
for t in (q, k, v)
|
|
)
|
|
|
|
# actually compute the attention, what we cannot get enough of
|
|
out = xformers.ops.memory_efficient_attention(
|
|
q, k, v, attn_bias=None, op=self.attention_op
|
|
)
|
|
|
|
if mask is not None:
|
|
raise NotImplementedError
|
|
out = (
|
|
out.unsqueeze(0)
|
|
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
|
.permute(0, 2, 1, 3)
|
|
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
|
)
|
|
return self.to_out(out)
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
ATTENTION_MODES = {
|
|
"softmax": CrossAttention, # vanilla attention
|
|
"softmax-xformers": MemoryEfficientCrossAttention,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
n_heads,
|
|
d_head,
|
|
dropout=0.0,
|
|
context_dim=None,
|
|
gated_ff=True,
|
|
checkpoint=True,
|
|
disable_self_attn=False,
|
|
):
|
|
super().__init__()
|
|
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
|
assert attn_mode in self.ATTENTION_MODES
|
|
attn_cls = self.ATTENTION_MODES[attn_mode]
|
|
self.disable_self_attn = disable_self_attn
|
|
self.attn1 = attn_cls(
|
|
query_dim=dim,
|
|
heads=n_heads,
|
|
dim_head=d_head,
|
|
dropout=dropout,
|
|
context_dim=context_dim if self.disable_self_attn else None,
|
|
) # is a self-attention if not self.disable_self_attn
|
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
|
self.attn2 = attn_cls(
|
|
query_dim=dim,
|
|
context_dim=context_dim,
|
|
heads=n_heads,
|
|
dim_head=d_head,
|
|
dropout=dropout,
|
|
) # is self-attn if context is none
|
|
self.norm1 = nn.LayerNorm(dim)
|
|
self.norm2 = nn.LayerNorm(dim)
|
|
self.norm3 = nn.LayerNorm(dim)
|
|
self.checkpoint = checkpoint
|
|
|
|
def forward(self, x, context=None):
|
|
return checkpoint_eval(
|
|
self._forward, (x, context), self.parameters(), self.checkpoint
|
|
)
|
|
|
|
def _forward(self, x, context=None):
|
|
x = x.contiguous() if x.device.type == "mps" else x
|
|
x = (
|
|
self.attn1(
|
|
self.norm1(x), context=context if self.disable_self_attn else None
|
|
)
|
|
+ x
|
|
)
|
|
x = self.attn2(self.norm2(x), context=context) + x
|
|
x = self.ff(self.norm3(x)) + x
|
|
return x
|
|
|
|
|
|
class SpatialTransformer(nn.Module):
|
|
"""
|
|
Transformer block for image-like data.
|
|
First, project the input (aka embedding)
|
|
and reshape to b, t, d.
|
|
Then apply standard transformer action.
|
|
Finally, reshape to image
|
|
NEW: use_linear for more efficiency instead of the 1x1 convs.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
n_heads,
|
|
d_head,
|
|
depth=1,
|
|
dropout=0.0,
|
|
context_dim=None,
|
|
disable_self_attn=False,
|
|
use_linear=False,
|
|
use_checkpoint=True,
|
|
):
|
|
super().__init__()
|
|
if context_dim is not None and not isinstance(context_dim, list):
|
|
context_dim = [context_dim]
|
|
self.in_channels = in_channels
|
|
inner_dim = n_heads * d_head
|
|
self.norm = Normalize(in_channels)
|
|
if not use_linear:
|
|
self.proj_in = nn.Conv2d(
|
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
|
)
|
|
else:
|
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim,
|
|
n_heads,
|
|
d_head,
|
|
dropout=dropout,
|
|
context_dim=context_dim[d],
|
|
disable_self_attn=disable_self_attn,
|
|
checkpoint=use_checkpoint,
|
|
)
|
|
for d in range(depth)
|
|
]
|
|
)
|
|
if not use_linear:
|
|
self.proj_out = zero_module(
|
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
|
)
|
|
else:
|
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
|
self.use_linear = use_linear
|
|
|
|
def forward(self, x, context=None):
|
|
# note: if no context is given, cross-attention defaults to self-attention
|
|
if not isinstance(context, list):
|
|
context = [context]
|
|
b, c, h, w = x.shape # noqa
|
|
x_in = x
|
|
x = self.norm(x)
|
|
if self.use_linear:
|
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
|
x = self.proj_in(x)
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
x = block(x, context=context[i])
|
|
x = self.proj_out(x)
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
|
else:
|
|
x = self.proj_in(x)
|
|
x = rearrange(x, "b c h w -> b (h w) c")
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
x = block(x, context=context[i])
|
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
|
x = self.proj_out(x)
|
|
|
|
return x + x_in
|