imaginAIry/imaginairy/api_refiners.py
Bryce b61d06651c tests: fix tests
- disable details mode. needs more work done to support
2023-12-03 09:13:01 -08:00

440 lines
16 KiB
Python

import logging
from typing import List, Optional
from imaginairy import WeightedPrompt
from imaginairy.config import CONTROLNET_CONFIG_SHORTCUTS
from imaginairy.model_manager import load_controlnet_adapter
logger = logging.getLogger(__name__)
def _generate_single_image(
prompt,
debug_img_callback=None,
progress_img_callback=None,
progress_img_interval_steps=3,
progress_img_interval_min_s=0.1,
half_mode=None,
add_caption=False,
# controlnet, finetune, naive, auto
inpaint_method="finetune",
return_latent=False,
):
import gc
import torch.nn
from PIL import ImageOps
from pytorch_lightning import seed_everything
from refiners.foundationals.latent_diffusion.schedulers import DDIM, DPMSolver
from tqdm import tqdm
from imaginairy.api import (
IMAGINAIRY_SAFETY_MODE,
_generate_composition_image,
combine_image,
)
from imaginairy.enhancers.clip_masking import get_img_mask
from imaginairy.enhancers.describe_image_blip import generate_caption
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
from imaginairy.enhancers.upscale_realesrgan import upscale_image
from imaginairy.img_utils import (
add_caption_to_image,
pillow_fit_image_within,
pillow_img_to_torch_image,
pillow_mask_to_latent_mask,
)
from imaginairy.log_utils import (
ImageLoggingContext,
log_img,
log_latent,
)
from imaginairy.model_manager import (
get_diffusion_model_refiners,
get_model_default_image_size,
)
from imaginairy.outpaint import outpaint_arg_str_parse, prepare_image_for_outpaint
from imaginairy.safety import create_safety_score
from imaginairy.samplers import SamplerName
from imaginairy.schema import ImaginePrompt, ImagineResult
from imaginairy.utils import get_device, randn_seeded
get_device()
gc.collect()
torch.cuda.empty_cache()
prompt = prompt.make_concrete_copy()
control_modes = []
control_inputs = prompt.control_inputs or []
control_inputs = control_inputs.copy()
for_inpainting = bool(prompt.mask_image or prompt.mask_prompt or prompt.outpaint)
if control_inputs:
control_modes = [c.mode for c in prompt.control_inputs]
sd = get_diffusion_model_refiners(
weights_location=prompt.model,
config_path=prompt.model_config_path,
control_weights_locations=tuple(control_modes),
half_mode=half_mode,
for_inpainting=for_inpainting and inpaint_method == "finetune",
)
seed_everything(prompt.seed)
downsampling_factor = 8
latent_channels = 4
batch_size = 1
mask_image = None
mask_image_orig = None
prompt = prompt.make_concrete_copy()
def latent_logger(latents):
progress_latents.append(latents)
with ImageLoggingContext(
prompt=prompt,
model=sd,
debug_img_callback=debug_img_callback,
progress_img_callback=progress_img_callback,
progress_img_interval_steps=progress_img_interval_steps,
progress_img_interval_min_s=progress_img_interval_min_s,
progress_latent_callback=latent_logger
if prompt.collect_progress_latents
else None,
) as lc:
sd.set_tile_mode(prompt.tile_mode)
clip_text_embedding = _calc_conditioning(
positive_prompts=prompt.prompts,
negative_prompts=prompt.negative_prompt,
positive_conditioning=prompt.conditioning,
text_encoder=sd.clip_text_encoder,
)
result_images = {}
progress_latents = []
first_step = 0
mask_grayscale = None
shape = [
batch_size,
latent_channels,
prompt.height // downsampling_factor,
prompt.width // downsampling_factor,
]
init_latent = None
noise_step = None
if prompt.init_image:
starting_image = prompt.init_image
first_step = int((prompt.steps) * prompt.init_image_strength)
# noise_step = int((prompt.steps - 1) * prompt.init_image_strength)
if prompt.mask_prompt:
mask_image, mask_grayscale = get_img_mask(
starting_image, prompt.mask_prompt, threshold=0.1
)
elif prompt.mask_image:
mask_image = prompt.mask_image.convert("L")
if prompt.outpaint:
outpaint_kwargs = outpaint_arg_str_parse(prompt.outpaint)
starting_image, mask_image = prepare_image_for_outpaint(
starting_image, mask_image, **outpaint_kwargs
)
init_image = pillow_fit_image_within(
starting_image,
max_height=prompt.height,
max_width=prompt.width,
)
init_image_t = pillow_img_to_torch_image(init_image)
init_image_t = init_image_t.to(device=sd.device, dtype=sd.dtype)
init_latent = sd.lda.encode(init_image_t)
shape = init_latent.shape
log_latent(init_latent, "init_latent")
if mask_image is not None:
mask_image = pillow_fit_image_within(
mask_image,
max_height=prompt.height,
max_width=prompt.width,
convert="L",
)
log_img(mask_image, "init mask")
if prompt.mask_mode == ImaginePrompt.MaskMode.REPLACE:
mask_image = ImageOps.invert(mask_image)
mask_image_orig = mask_image
log_img(mask_image, "latent_mask")
pillow_mask_to_latent_mask(
mask_image, downsampling_factor=downsampling_factor
).to(get_device())
# if inpaint_method == "controlnet":
# result_images["control-inpaint"] = mask_image
# control_inputs.append(
# ControlNetInput(mode="inpaint", image=mask_image)
# )
seed_everything(prompt.seed)
noise = randn_seeded(seed=prompt.seed, size=shape).to(
get_device(), dtype=sd.dtype
)
noised_latent = noise
controlnets = []
if control_modes:
control_strengths = []
from imaginairy.img_processors.control_modes import CONTROL_MODES
for control_input in control_inputs:
if control_input.image_raw is not None:
control_image = control_input.image_raw
elif control_input.image is not None:
control_image = control_input.image
control_image = control_image.convert("RGB")
log_img(control_image, "control_image_input")
control_image_input = pillow_fit_image_within(
control_image,
max_height=prompt.height,
max_width=prompt.width,
)
if control_input.mode == "inpaint":
control_image_input = ImageOps.invert(control_image_input)
control_image_input_t = pillow_img_to_torch_image(control_image_input)
control_image_input_t = control_image_input_t.to(get_device())
if control_input.image_raw is None:
control_prep_function = CONTROL_MODES[control_input.mode]
if control_input.mode == "inpaint":
control_image_t = control_prep_function(
control_image_input_t, init_image_t
)
else:
control_image_t = control_prep_function(control_image_input_t)
else:
control_image_t = (control_image_input_t + 1) / 2
control_image_disp = control_image_t * 2 - 1
result_images[f"control-{control_input.mode}"] = control_image_disp
log_img(control_image_disp, "control_image")
if len(control_image_t.shape) == 3:
raise RuntimeError("Control image must be 4D")
if control_image_t.shape[1] != 3:
raise RuntimeError("Control image must have 3 channels")
if (
control_input.mode != "inpaint"
and control_image_t.min() < 0
or control_image_t.max() > 1
):
msg = f"Control image must be in [0, 1] but we received {control_image_t.min()} and {control_image_t.max()}"
raise RuntimeError(msg)
if control_image_t.max() == control_image_t.min():
msg = f"No control signal found in control image {control_input.mode}."
raise RuntimeError(msg)
control_strengths.append(control_input.strength)
control_weights_path = CONTROLNET_CONFIG_SHORTCUTS.get(
control_input.mode, None
).weights_url
controlnet = load_controlnet_adapter(
name=control_input.mode,
control_weights_location=control_weights_path,
target_unet=sd.unet,
scale=control_input.strength,
)
controlnets.append((controlnet, control_image_t))
if prompt.allow_compose_phase:
if prompt.init_image:
comp_image, comp_img_orig = _generate_composition_image(
prompt=prompt,
target_height=init_image.height,
target_width=init_image.width,
cutoff=get_model_default_image_size(prompt.model),
)
else:
comp_image, comp_img_orig = _generate_composition_image(
prompt=prompt,
target_height=prompt.height,
target_width=prompt.width,
cutoff=get_model_default_image_size(prompt.model),
)
if comp_image is not None:
result_images["composition"] = comp_img_orig
result_images["composition-upscaled"] = comp_image
# noise = noise[:, :, : comp_image.height, : comp_image.shape[3]]
comp_cutoff = 0.60
first_step = int((prompt.steps) * comp_cutoff)
noise_step = int((prompt.steps - 1) * comp_cutoff)
# noise_step = int(prompt.steps * max(comp_cutoff - 0.05, 0))
# noise_step = max(noise_step, 0)
# noise_step = min(noise_step, prompt.steps - 1)
log_img(comp_image, "comp_image")
comp_image_t = pillow_img_to_torch_image(comp_image)
comp_image_t = comp_image_t.to(sd.device, dtype=sd.dtype)
init_latent = sd.lda.encode(comp_image_t)
for controlnet, control_image_t in controlnets:
controlnet.set_controlnet_condition(
control_image_t.to(device=sd.device, dtype=sd.dtype)
)
controlnet.inject()
if prompt.sampler_type.lower() == SamplerName.K_DPMPP_2M:
sd.scheduler = DPMSolver(num_inference_steps=prompt.steps)
elif prompt.sampler_type.lower() == SamplerName.DDIM:
sd.scheduler = DDIM(num_inference_steps=prompt.steps)
else:
msg = f"Unknown sampler type: {prompt.sampler_type}"
raise ValueError(msg)
sd.scheduler.to(device=sd.device, dtype=sd.dtype)
sd.set_num_inference_steps(prompt.steps)
if hasattr(sd, "mask_latents"):
sd.set_inpainting_conditions(
target_image=init_image,
mask=ImageOps.invert(mask_image),
latents_size=shape[-2:],
)
if init_latent is not None:
noise_step = noise_step if noise_step is not None else first_step
if first_step >= len(sd.steps):
noised_latent = init_latent
else:
noised_latent = sd.scheduler.add_noise(
x=init_latent, noise=noise, step=sd.steps[noise_step]
)
x = noised_latent
x = x.to(device=sd.device, dtype=sd.dtype)
for step in tqdm(sd.steps[first_step:], bar_format=" {l_bar}{bar}{r_bar}"):
log_latent(x, "noisy_latent")
x = sd(
x,
step=step,
clip_text_embedding=clip_text_embedding,
condition_scale=prompt.prompt_strength,
)
logger.debug("Decoding image")
gen_img = sd.lda.decode_latents(x)
if mask_image_orig and init_image:
result_images["pre-reconstitution"] = gen_img
mask_final = mask_image_orig.copy()
# mask_final = ImageOps.invert(mask_final)
log_img(mask_final, "reconstituting mask")
# gen_img = Image.composite(gen_img, init_image, mask_final)
gen_img = combine_image(
original_img=init_image,
generated_img=gen_img,
mask_img=mask_final,
)
log_img(gen_img, "reconstituted image")
upscaled_img = None
rebuilt_orig_img = None
if add_caption:
caption = generate_caption(gen_img)
logger.info(f"Generated caption: {caption}")
with lc.timing("safety-filter"):
safety_score = create_safety_score(
gen_img,
safety_mode=IMAGINAIRY_SAFETY_MODE,
)
if safety_score.is_filtered:
progress_latents.clear()
if not safety_score.is_filtered:
if prompt.fix_faces:
logger.info("Fixing 😊 's in 🖼 using CodeFormer...")
with lc.timing("face enhancement"):
gen_img = enhance_faces(gen_img, fidelity=prompt.fix_faces_fidelity)
if prompt.upscale:
logger.info("Upscaling 🖼 using real-ESRGAN...")
with lc.timing("upscaling"):
upscaled_img = upscale_image(gen_img)
# put the newly generated patch back into the original, full-size image
if prompt.mask_modify_original and mask_image_orig and starting_image:
logger.info("Combining inpainting with original image...")
img_to_add_back_to_original = upscaled_img if upscaled_img else gen_img
rebuilt_orig_img = combine_image(
original_img=starting_image,
generated_img=img_to_add_back_to_original,
mask_img=mask_image_orig,
)
if prompt.caption_text:
caption_text = prompt.caption_text.format(prompt=prompt.prompt_text)
add_caption_to_image(gen_img, caption_text)
result = ImagineResult(
img=gen_img,
prompt=prompt,
upscaled_img=upscaled_img,
is_nsfw=safety_score.is_nsfw,
safety_score=safety_score,
modified_original=rebuilt_orig_img,
mask_binary=mask_image_orig,
mask_grayscale=mask_grayscale,
result_images=result_images,
timings={},
progress_latents=[],
)
_most_recent_result = result
if result.timings:
logger.info(f"Image Generated. Timings: {result.timings_str()}")
for controlnet, _ in controlnets:
controlnet.eject()
gc.collect()
torch.cuda.empty_cache()
return result
def _prompts_to_embeddings(prompts, text_encoder):
total_weight = sum(wp.weight for wp in prompts)
conditioning = sum(
text_encoder(wp.text) * (wp.weight / total_weight) for wp in prompts
)
return conditioning
def _calc_conditioning(
positive_prompts: Optional[List[WeightedPrompt]],
negative_prompts: Optional[List[WeightedPrompt]],
positive_conditioning,
text_encoder,
):
import torch
from imaginairy.log_utils import log_conditioning
# need to expand if doing batches
neutral_conditioning = _prompts_to_embeddings(negative_prompts, text_encoder)
log_conditioning(neutral_conditioning, "neutral conditioning")
if positive_conditioning is None:
positive_conditioning = _prompts_to_embeddings(positive_prompts, text_encoder)
log_conditioning(positive_conditioning, "positive conditioning")
clip_text_embedding = torch.cat(
tensors=(neutral_conditioning, positive_conditioning), dim=0
)
return clip_text_embedding