mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
601a112dc3
+ renames and typehints
385 lines
14 KiB
Python
385 lines
14 KiB
Python
import logging
|
|
import math
|
|
import os
|
|
import queue
|
|
import threading
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from imaginairy.utils.downloads import get_cached_url_path
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class RealESRGANer:
|
|
"""A helper class for upsampling images with RealESRGAN.
|
|
|
|
Args:
|
|
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
|
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
|
model (nn.Module): The defined network. Default: None.
|
|
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
|
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
|
0 denotes for do not use tile. Default: 0.
|
|
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
|
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
|
half (float): Whether to use half precision during inference. Default: False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
scale,
|
|
model_path,
|
|
dni_weight=None,
|
|
model=None,
|
|
tile=0,
|
|
tile_pad=10,
|
|
pre_pad=10,
|
|
half=False,
|
|
device=None,
|
|
gpu_id=None,
|
|
):
|
|
self.scale = scale
|
|
self.tile_size = tile
|
|
self.tile_pad = tile_pad
|
|
self.pre_pad = pre_pad
|
|
self.mod_scale = None
|
|
self.half = half
|
|
|
|
# initialize model
|
|
if gpu_id:
|
|
self.device = (
|
|
torch.device(f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
|
|
if device is None
|
|
else device
|
|
)
|
|
else:
|
|
self.device = (
|
|
torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
if device is None
|
|
else device
|
|
)
|
|
|
|
if isinstance(model_path, list):
|
|
# dni
|
|
assert len(model_path) == len(
|
|
dni_weight
|
|
), "model_path and dni_weight should have the save length."
|
|
loadnet = self.dni(model_path[0], model_path[1], dni_weight)
|
|
else:
|
|
# if the model_path starts with https, it will first download models to the folder: weights
|
|
if model_path.startswith("https://"):
|
|
model_path = get_cached_url_path(model_path)
|
|
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
|
|
|
|
# prefer to use params_ema
|
|
if "params_ema" in loadnet:
|
|
keyname = "params_ema"
|
|
loadnet = loadnet[keyname]
|
|
elif "params" in loadnet:
|
|
keyname = "params"
|
|
loadnet = loadnet[keyname]
|
|
else:
|
|
loadnet = convert_realesrgan_state_dict(loadnet)
|
|
model.load_state_dict(loadnet, strict=True)
|
|
|
|
model.eval()
|
|
self.model = model.to(self.device)
|
|
if self.half:
|
|
self.model = self.model.half()
|
|
|
|
def dni(self, net_a, net_b, dni_weight, key="params", loc="cpu"):
|
|
"""Deep network interpolation.
|
|
|
|
``Paper: Deep Network Interpolation for Continuous Imagery Effect Transition``
|
|
"""
|
|
net_a = torch.load(net_a, map_location=torch.device(loc))
|
|
net_b = torch.load(net_b, map_location=torch.device(loc))
|
|
for k, v_a in net_a[key].items():
|
|
net_a[key][k] = dni_weight[0] * v_a + dni_weight[1] * net_b[key][k]
|
|
return net_a
|
|
|
|
def pre_process(self, img):
|
|
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible."""
|
|
img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
|
self.img = img.unsqueeze(0).to(self.device)
|
|
if self.half:
|
|
self.img = self.img.half()
|
|
|
|
# pre_pad
|
|
if self.pre_pad != 0:
|
|
self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), "reflect")
|
|
# mod pad for divisible borders
|
|
if self.scale == 2:
|
|
self.mod_scale = 2
|
|
elif self.scale == 1:
|
|
self.mod_scale = 4
|
|
if self.mod_scale is not None:
|
|
self.mod_pad_h, self.mod_pad_w = 0, 0
|
|
_, _, h, w = self.img.size()
|
|
if h % self.mod_scale != 0:
|
|
self.mod_pad_h = self.mod_scale - h % self.mod_scale
|
|
if w % self.mod_scale != 0:
|
|
self.mod_pad_w = self.mod_scale - w % self.mod_scale
|
|
self.img = F.pad(
|
|
self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), "reflect"
|
|
)
|
|
|
|
def process(self):
|
|
# model inference
|
|
self.output = self.model(self.img)
|
|
|
|
def tile_process(self):
|
|
"""It will first crop input images to tiles, and then process each tile.
|
|
Finally, all the processed tiles are merged into one images.
|
|
|
|
Modified from: https://github.com/ata4/esrgan-launcher
|
|
"""
|
|
batch, channel, height, width = self.img.shape
|
|
output_height = height * self.scale
|
|
output_width = width * self.scale
|
|
output_shape = (batch, channel, output_height, output_width)
|
|
|
|
# start with black image
|
|
self.output = self.img.new_zeros(output_shape)
|
|
tiles_x = math.ceil(width / self.tile_size)
|
|
tiles_y = math.ceil(height / self.tile_size)
|
|
logger.debug(f"Tiling with {tiles_x}x{tiles_y} ({tiles_x*tiles_y}) tiles")
|
|
# loop over all tiles
|
|
for y in range(tiles_y):
|
|
for x in range(tiles_x):
|
|
# extract tile from input image
|
|
ofs_x = x * self.tile_size
|
|
ofs_y = y * self.tile_size
|
|
# input tile area on total image
|
|
input_start_x = ofs_x
|
|
input_end_x = min(ofs_x + self.tile_size, width)
|
|
input_start_y = ofs_y
|
|
input_end_y = min(ofs_y + self.tile_size, height)
|
|
|
|
# input tile area on total image with padding
|
|
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
|
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
|
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
|
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
|
|
|
# input tile dimensions
|
|
input_tile_width = input_end_x - input_start_x
|
|
input_tile_height = input_end_y - input_start_y
|
|
input_tile = self.img[
|
|
:,
|
|
:,
|
|
input_start_y_pad:input_end_y_pad,
|
|
input_start_x_pad:input_end_x_pad,
|
|
]
|
|
|
|
# upscale tile
|
|
with torch.no_grad():
|
|
output_tile = self.model(input_tile)
|
|
|
|
# output tile area on total image
|
|
output_start_x = input_start_x * self.scale
|
|
output_end_x = input_end_x * self.scale
|
|
output_start_y = input_start_y * self.scale
|
|
output_end_y = input_end_y * self.scale
|
|
|
|
# output tile area without padding
|
|
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
|
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
|
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
|
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
|
|
|
# put tile into output image
|
|
self.output[
|
|
:, :, output_start_y:output_end_y, output_start_x:output_end_x
|
|
] = output_tile[
|
|
:,
|
|
:,
|
|
output_start_y_tile:output_end_y_tile,
|
|
output_start_x_tile:output_end_x_tile,
|
|
]
|
|
|
|
def post_process(self):
|
|
# remove extra pad
|
|
if self.mod_scale is not None:
|
|
_, _, h, w = self.output.size()
|
|
self.output = self.output[
|
|
:,
|
|
:,
|
|
0 : h - self.mod_pad_h * self.scale,
|
|
0 : w - self.mod_pad_w * self.scale,
|
|
]
|
|
# remove prepad
|
|
if self.pre_pad != 0:
|
|
_, _, h, w = self.output.size()
|
|
self.output = self.output[
|
|
:,
|
|
:,
|
|
0 : h - self.pre_pad * self.scale,
|
|
0 : w - self.pre_pad * self.scale,
|
|
]
|
|
return self.output
|
|
|
|
@torch.no_grad()
|
|
def enhance(self, img, outscale=None, alpha_upsampler="realesrgan"):
|
|
h_input, w_input = img.shape[0:2]
|
|
# img: numpy
|
|
img = img.astype(np.float32)
|
|
if np.max(img) > 256: # 16-bit image
|
|
max_range = 65535
|
|
print("\tInput is a 16-bit image")
|
|
else:
|
|
max_range = 255
|
|
img = img / max_range
|
|
if len(img.shape) == 2: # gray image
|
|
img_mode = "L"
|
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
|
elif img.shape[2] == 4: # RGBA image with alpha channel
|
|
img_mode = "RGBA"
|
|
alpha = img[:, :, 3]
|
|
img = img[:, :, 0:3]
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
if alpha_upsampler == "realesrgan":
|
|
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
|
else:
|
|
img_mode = "RGB"
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
# ------------------- process image (without the alpha channel) ------------------- #
|
|
self.pre_process(img)
|
|
if self.tile_size > 0:
|
|
self.tile_process()
|
|
else:
|
|
self.process()
|
|
output_img = self.post_process()
|
|
output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
|
if img_mode == "L":
|
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
|
|
|
# ------------------- process the alpha channel if necessary ------------------- #
|
|
if img_mode == "RGBA":
|
|
if alpha_upsampler == "realesrgan":
|
|
self.pre_process(alpha)
|
|
if self.tile_size > 0:
|
|
self.tile_process()
|
|
else:
|
|
self.process()
|
|
output_alpha = self.post_process()
|
|
output_alpha = (
|
|
output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
)
|
|
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
|
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
|
else: # use the cv2 resize for alpha channel
|
|
h, w = alpha.shape[0:2]
|
|
output_alpha = cv2.resize(
|
|
alpha,
|
|
(w * self.scale, h * self.scale),
|
|
interpolation=cv2.INTER_LINEAR,
|
|
)
|
|
|
|
# merge the alpha channel
|
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
|
output_img[:, :, 3] = output_alpha
|
|
|
|
# ------------------------------ return ------------------------------ #
|
|
if max_range == 65535: # 16-bit image
|
|
output = (output_img * 65535.0).round().astype(np.uint16)
|
|
else:
|
|
output = (output_img * 255.0).round().astype(np.uint8)
|
|
|
|
if outscale is not None and outscale != float(self.scale):
|
|
output = cv2.resize(
|
|
output,
|
|
(
|
|
int(w_input * outscale),
|
|
int(h_input * outscale),
|
|
),
|
|
interpolation=cv2.INTER_LANCZOS4,
|
|
)
|
|
|
|
return output, img_mode
|
|
|
|
|
|
class PrefetchReader(threading.Thread):
|
|
"""Prefetch images.
|
|
|
|
Args:
|
|
img_list (list[str]): A image list of image paths to be read.
|
|
num_prefetch_queue (int): Number of prefetch queue.
|
|
"""
|
|
|
|
def __init__(self, img_list, num_prefetch_queue):
|
|
super().__init__()
|
|
self.que = queue.Queue(num_prefetch_queue)
|
|
self.img_list = img_list
|
|
|
|
def run(self):
|
|
for img_path in self.img_list:
|
|
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
|
self.que.put(img)
|
|
|
|
self.que.put(None)
|
|
|
|
def __next__(self):
|
|
next_item = self.que.get()
|
|
if next_item is None:
|
|
raise StopIteration
|
|
return next_item
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
|
|
class IOConsumer(threading.Thread):
|
|
def __init__(self, opt, que, qid):
|
|
super().__init__()
|
|
self._queue = que
|
|
self.qid = qid
|
|
self.opt = opt
|
|
|
|
def run(self):
|
|
while True:
|
|
msg = self._queue.get()
|
|
if isinstance(msg, str) and msg == "quit":
|
|
break
|
|
|
|
output = msg["output"]
|
|
save_path = msg["save_path"]
|
|
cv2.imwrite(save_path, output)
|
|
print(f"IO worker {self.qid} is done.")
|
|
|
|
|
|
def convert_realesrgan_state_dict(state_dict):
|
|
new_state_dict = {}
|
|
|
|
new_state_dict["conv_first.weight"] = state_dict.pop("model.0.weight")
|
|
new_state_dict["conv_first.bias"] = state_dict.pop("model.0.bias")
|
|
# "model.1.sub.21.RDB3.conv5.0.weight => body.21.rdb1.conv3.weight"
|
|
|
|
for k, v in list(state_dict.items()):
|
|
parts = k.split(".")
|
|
if len(parts) == 8 and parts[0] == "model":
|
|
new_parts = ["body", parts[3], parts[4].lower(), parts[5], parts[7]]
|
|
new_k = ".".join(new_parts)
|
|
new_state_dict[new_k] = state_dict.pop(k)
|
|
|
|
new_state_dict["conv_body.weight"] = state_dict.pop("model.1.sub.23.weight")
|
|
new_state_dict["conv_body.bias"] = state_dict.pop("model.1.sub.23.bias")
|
|
new_state_dict["conv_up1.weight"] = state_dict.pop("model.3.weight")
|
|
new_state_dict["conv_up1.bias"] = state_dict.pop("model.3.bias")
|
|
new_state_dict["conv_up2.weight"] = state_dict.pop("model.6.weight")
|
|
new_state_dict["conv_up2.bias"] = state_dict.pop("model.6.bias")
|
|
new_state_dict["conv_hr.weight"] = state_dict.pop("model.8.weight")
|
|
new_state_dict["conv_hr.bias"] = state_dict.pop("model.8.bias")
|
|
|
|
new_state_dict["conv_last.weight"] = state_dict.pop("model.10.weight")
|
|
new_state_dict["conv_last.bias"] = state_dict.pop("model.10.bias")
|
|
|
|
return new_state_dict
|