mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
967eb76365
- simpler logging suppression for `transformers` library - suppress logging noise for running tests - get test running for all samplers on mps and cuda platforms - refactor safety model env variable to allow classification
279 lines
9.9 KiB
Python
Executable File
279 lines
9.9 KiB
Python
Executable File
import logging
|
|
import os
|
|
import re
|
|
from contextlib import nullcontext
|
|
from functools import lru_cache
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn
|
|
from einops import rearrange
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image, ImageDraw, ImageFilter
|
|
from pytorch_lightning import seed_everything
|
|
from torch import autocast
|
|
from transformers import cached_path
|
|
|
|
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
|
|
from imaginairy.enhancers.upscale_realesrgan import upscale_image
|
|
from imaginairy.img_log import LatentLoggingContext, log_latent
|
|
from imaginairy.safety import is_nsfw
|
|
from imaginairy.samplers.base import get_sampler
|
|
from imaginairy.schema import ImaginePrompt, ImagineResult
|
|
from imaginairy.utils import (
|
|
fix_torch_nn_layer_norm,
|
|
get_device,
|
|
img_path_to_torch_image,
|
|
instantiate_from_config,
|
|
)
|
|
|
|
LIB_PATH = os.path.dirname(__file__)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SafetyMode:
|
|
DISABLED = "disabled"
|
|
CLASSIFY = "classify"
|
|
FILTER = "filter"
|
|
|
|
|
|
# leave undocumented. I'd ask that no one publicize this flag. Just want a
|
|
# slight barrier to entry. Please don't use this is any way that's gonna cause
|
|
# the press or governments to freak out about AI...
|
|
IMAGINAIRY_SAFETY_MODE = os.getenv("IMAGINAIRY_SAFETY_MODE", SafetyMode.FILTER)
|
|
|
|
|
|
def load_model_from_config(config):
|
|
url = "https://www.googleapis.com/storage/v1/b/aai-blog-files/o/sd-v1-4.ckpt?alt=media"
|
|
ckpt_path = cached_path(url)
|
|
logger.info(f"Loading model onto {get_device()} backend...")
|
|
logger.debug(f"Loading model from {ckpt_path}")
|
|
pl_sd = torch.load(ckpt_path, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
logger.debug(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
model = instantiate_from_config(config.model)
|
|
m, u = model.load_state_dict(sd, strict=False)
|
|
if len(m) > 0:
|
|
logger.debug(f"missing keys: {m}")
|
|
if len(u) > 0:
|
|
logger.debug(f"unexpected keys: {u}")
|
|
|
|
model.to(get_device())
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def patch_conv(**patch):
|
|
"""
|
|
Patch to enable tiling mode
|
|
https://github.com/replicate/cog-stable-diffusion/compare/main...TomMoore515:material_stable_diffusion:main
|
|
"""
|
|
cls = torch.nn.Conv2d
|
|
init = cls.__init__
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
return init(self, *args, **kwargs, **patch)
|
|
|
|
cls.__init__ = __init__
|
|
|
|
|
|
@lru_cache()
|
|
def load_model(tile_mode=False):
|
|
if tile_mode:
|
|
# generated images are tileable
|
|
patch_conv(padding_mode="circular")
|
|
|
|
config = "configs/stable-diffusion-v1.yaml"
|
|
config = OmegaConf.load(f"{LIB_PATH}/{config}")
|
|
model = load_model_from_config(config)
|
|
|
|
model = model.to(get_device())
|
|
return model
|
|
|
|
|
|
def imagine_image_files(
|
|
prompts,
|
|
outdir,
|
|
latent_channels=4,
|
|
downsampling_factor=8,
|
|
precision="autocast",
|
|
ddim_eta=0.0,
|
|
record_step_images=False,
|
|
output_file_extension="jpg",
|
|
tile_mode=False,
|
|
):
|
|
big_path = os.path.join(outdir, "upscaled")
|
|
os.makedirs(outdir, exist_ok=True)
|
|
|
|
base_count = len(os.listdir(outdir))
|
|
output_file_extension = output_file_extension.lower()
|
|
if output_file_extension not in {"jpg", "png"}:
|
|
raise ValueError("Must output a png or jpg")
|
|
|
|
def _record_step(img, description, step_count, prompt):
|
|
steps_path = os.path.join(outdir, "steps", f"{base_count:08}_S{prompt.seed}")
|
|
os.makedirs(steps_path, exist_ok=True)
|
|
filename = f"{base_count:08}_S{prompt.seed}_step{step_count:04}.jpg"
|
|
destination = os.path.join(steps_path, filename)
|
|
draw = ImageDraw.Draw(img)
|
|
draw.text((10, 10), str(description))
|
|
img.save(destination)
|
|
|
|
for result in imagine(
|
|
prompts,
|
|
latent_channels=latent_channels,
|
|
downsampling_factor=downsampling_factor,
|
|
precision=precision,
|
|
ddim_eta=ddim_eta,
|
|
img_callback=_record_step if record_step_images else None,
|
|
tile_mode=tile_mode,
|
|
):
|
|
prompt = result.prompt
|
|
basefilename = f"{base_count:06}_{prompt.seed}_{prompt.sampler_type}{prompt.steps}_PS{prompt.prompt_strength}_{prompt_normalized(prompt.prompt_text)}"
|
|
filepath = os.path.join(outdir, f"{basefilename}.jpg")
|
|
|
|
result.save(filepath)
|
|
logger.info(f" 🖼 saved to: {filepath}")
|
|
if result.upscaled_img:
|
|
os.makedirs(big_path, exist_ok=True)
|
|
bigfilepath = os.path.join(big_path, basefilename) + "_upscaled.jpg"
|
|
result.save_upscaled(bigfilepath)
|
|
logger.info(f" Upscaled 🖼 saved to: {bigfilepath}")
|
|
base_count += 1
|
|
|
|
|
|
def imagine(
|
|
prompts,
|
|
latent_channels=4,
|
|
downsampling_factor=8,
|
|
precision="autocast",
|
|
ddim_eta=0.0,
|
|
img_callback=None,
|
|
tile_mode=False,
|
|
half_mode=None,
|
|
):
|
|
model = load_model(tile_mode=tile_mode)
|
|
|
|
# only run half-mode on cuda. run it by default
|
|
half_mode = half_mode is None and get_device() == "cuda"
|
|
if half_mode:
|
|
model = model.half()
|
|
# needed when model is in half mode, remove if not using half mode
|
|
# torch.set_default_tensor_type(torch.HalfTensor)
|
|
prompts = [ImaginePrompt(prompts)] if isinstance(prompts, str) else prompts
|
|
prompts = [prompts] if isinstance(prompts, ImaginePrompt) else prompts
|
|
_img_callback = None
|
|
step_count = 0
|
|
|
|
precision_scope = (
|
|
autocast
|
|
if precision == "autocast" and get_device() in ("cuda", "cpu")
|
|
else nullcontext
|
|
)
|
|
with (torch.no_grad(), precision_scope(get_device()), fix_torch_nn_layer_norm()):
|
|
for prompt in prompts:
|
|
with LatentLoggingContext(
|
|
prompt=prompt, model=model, img_callback=img_callback
|
|
):
|
|
logger.info(f"Generating {prompt.prompt_description()}")
|
|
seed_everything(prompt.seed)
|
|
|
|
uc = None
|
|
if prompt.prompt_strength != 1.0:
|
|
uc = model.get_learned_conditioning(1 * [""])
|
|
total_weight = sum(wp.weight for wp in prompt.prompts)
|
|
c = sum(
|
|
[
|
|
model.get_learned_conditioning(wp.text)
|
|
* (wp.weight / total_weight)
|
|
for wp in prompt.prompts
|
|
]
|
|
)
|
|
|
|
shape = [
|
|
latent_channels,
|
|
prompt.height // downsampling_factor,
|
|
prompt.width // downsampling_factor,
|
|
]
|
|
|
|
start_code = None
|
|
sampler = get_sampler(prompt.sampler_type, model)
|
|
if prompt.init_image:
|
|
generation_strength = 1 - prompt.init_image_strength
|
|
ddim_steps = int(prompt.steps / generation_strength)
|
|
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta)
|
|
|
|
init_image, w, h = img_path_to_torch_image(prompt.init_image)
|
|
init_image = init_image.to(get_device())
|
|
init_latent = model.get_first_stage_encoding(
|
|
model.encode_first_stage(init_image)
|
|
)
|
|
|
|
log_latent(init_latent, "init_latent")
|
|
# encode (scaled latent)
|
|
z_enc = sampler.stochastic_encode(
|
|
init_latent,
|
|
torch.tensor([prompt.steps]).to(get_device()),
|
|
)
|
|
log_latent(z_enc, "z_enc")
|
|
|
|
# decode it
|
|
samples = sampler.decode(
|
|
z_enc,
|
|
c,
|
|
prompt.steps,
|
|
unconditional_guidance_scale=prompt.prompt_strength,
|
|
unconditional_conditioning=uc,
|
|
img_callback=_img_callback,
|
|
)
|
|
else:
|
|
|
|
samples, _ = sampler.sample(
|
|
num_steps=prompt.steps,
|
|
conditioning=c,
|
|
batch_size=1,
|
|
shape=shape,
|
|
unconditional_guidance_scale=prompt.prompt_strength,
|
|
unconditional_conditioning=uc,
|
|
eta=ddim_eta,
|
|
initial_noise_tensor=start_code,
|
|
img_callback=_img_callback,
|
|
)
|
|
|
|
x_samples = model.decode_first_stage(samples)
|
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
|
|
|
for x_sample in x_samples:
|
|
x_sample = 255.0 * rearrange(
|
|
x_sample.cpu().numpy(), "c h w -> h w c"
|
|
)
|
|
x_sample_8_orig = x_sample.astype(np.uint8)
|
|
img = Image.fromarray(x_sample_8_orig)
|
|
upscaled_img = None
|
|
is_nsfw_img = None
|
|
if IMAGINAIRY_SAFETY_MODE != SafetyMode.DISABLED:
|
|
if is_nsfw(img, x_sample, half_mode=half_mode):
|
|
is_nsfw_img = True
|
|
if IMAGINAIRY_SAFETY_MODE == SafetyMode.FILTER:
|
|
logger.info(" ⚠️ Filtering NSFW image")
|
|
img = img.filter(ImageFilter.GaussianBlur(radius=40))
|
|
|
|
if prompt.fix_faces:
|
|
logger.info(" Fixing 😊 's in 🖼 using GFPGAN...")
|
|
img = enhance_faces(img, fidelity=0.2)
|
|
if prompt.upscale:
|
|
logger.info(" Upscaling 🖼 using real-ESRGAN...")
|
|
upscaled_img = upscale_image(img)
|
|
|
|
yield ImagineResult(
|
|
img=img,
|
|
prompt=prompt,
|
|
upscaled_img=upscaled_img,
|
|
is_nsfw=is_nsfw_img,
|
|
)
|
|
|
|
|
|
def prompt_normalized(prompt):
|
|
return re.sub(r"[^a-zA-Z0-9.,]+", "_", prompt)[:130]
|