imaginAIry/imaginairy/utils/animations.py

131 lines
3.8 KiB
Python

"""Functions for creating animations from images."""
import os.path
import cv2
import torch
from imaginairy.utils import shrink_list
from imaginairy.utils.img_utils import (
add_caption_to_image,
imgpaths_to_imgs,
model_latents_to_pillow_imgs,
pillow_img_to_opencv_img,
)
def make_bounce_animation(
imgs,
outpath,
transition_duration_ms=500,
start_pause_duration_ms=1000,
end_pause_duration_ms=2000,
):
first_img = imgs[0]
last_img = imgs[-1]
middle_imgs = imgs[1:-1]
max_fps = 20
max_frames = int(round(transition_duration_ms / 1000 * max_fps))
min_duration = int(1000 / 20)
if middle_imgs:
progress_duration = int(round(transition_duration_ms / len(middle_imgs)))
else:
progress_duration = 0
progress_duration = max(progress_duration, min_duration)
middle_imgs = shrink_list(middle_imgs, max_frames)
frames = [first_img, *middle_imgs, last_img, *list(reversed(middle_imgs))]
# convert from latents
converted_frames = []
for frame in frames:
if isinstance(frame, torch.Tensor):
frame = model_latents_to_pillow_imgs(frame)[0]
converted_frames.append(frame)
frames = converted_frames
durations = (
[start_pause_duration_ms]
+ [progress_duration] * len(middle_imgs)
+ [end_pause_duration_ms]
+ [progress_duration] * len(middle_imgs)
)
make_animation(imgs=frames, outpath=outpath, frame_duration_ms=durations)
def make_slideshow_animation(
imgs,
outpath,
image_pause_ms=1000,
):
# convert from latents
converted_frames = []
for frame in imgs:
if isinstance(frame, torch.Tensor):
frame = model_latents_to_pillow_imgs(frame)[0]
converted_frames.append(frame)
durations = [image_pause_ms] * len(converted_frames)
make_animation(imgs=converted_frames, outpath=outpath, frame_duration_ms=durations)
def make_animation(imgs, outpath, frame_duration_ms=100, captions=None):
imgs = imgpaths_to_imgs(imgs)
ext = os.path.splitext(outpath)[1].lower().strip(".")
if captions:
if len(captions) != len(imgs):
raise ValueError("Captions and images must be of same length.")
for img, caption in zip(imgs, captions):
add_caption_to_image(img, caption)
if ext == "gif":
make_gif_animation(
imgs=imgs, outpath=outpath, frame_duration_ms=frame_duration_ms
)
elif ext == "mp4":
make_mp4_animation(
imgs=imgs, outpath=outpath, frame_duration_ms=frame_duration_ms
)
def make_gif_animation(imgs, outpath, frame_duration_ms=100, loop=0):
imgs = imgpaths_to_imgs(imgs)
imgs[0].save(
outpath,
save_all=True,
append_images=imgs[1:],
duration=frame_duration_ms,
loop=loop,
optimize=False,
)
def make_mp4_animation(imgs, outpath, frame_duration_ms=50, fps=30, codec="mp4v"):
imgs = imgpaths_to_imgs(imgs)
frame_size = imgs[0].size
fourcc = cv2.VideoWriter_fourcc(*codec)
out = cv2.VideoWriter(outpath, fourcc, fps, frame_size)
if not isinstance(frame_duration_ms, list):
frame_duration_ms = [frame_duration_ms] * len(imgs)
try:
for image in select_images_by_duration_at_fps(imgs, frame_duration_ms, fps):
image = pillow_img_to_opencv_img(image)
out.write(image)
finally:
out.release()
def select_images_by_duration_at_fps(images, durations_ms, fps=30):
"""select the proper image to show for each frame of a video."""
for i, image in enumerate(images):
duration = durations_ms[i] / 1000
num_frames = int(round(duration * fps))
print(
f"Showing image {i} for {num_frames} frames for {durations_ms[i]}ms at {fps} fps."
)
for j in range(num_frames):
yield image