imaginAIry/imaginairy/safety.py
Bryce Drennan 9eacf5e7ed
perf: improve startup time by doing some imports lazily (#233)
just running `aimg --help` or `aimg --version` was very slow due to all the imports being brought in eagerly

Before changes `aimg --help`
`2.24s user 4.05s system 184% cpu 3.416 total`

After changes:
`0.04s user 0.02s system 8% cpu 0.625 total`

Used `PYTHONPROFILEIMPORTTIME=1 aimg --help` to find time consuming imports.

Also switched to using `scripts` instead of `entrypoints` since the scripts are much faster.

Made duplicate SAMPLER_TYPE_OPTIONS that can be loaded without loading all the samplers themselves.

Likely a breaking change - not sure.
2023-02-02 21:43:04 -08:00

174 lines
5.8 KiB
Python

import logging
from functools import lru_cache
import torch
from diffusers.pipelines.stable_diffusion import safety_checker as safety_checker_mod
from transformers import AutoFeatureExtractor
from imaginairy.enhancers.blur_detect import is_blurry
from imaginairy.schema import SafetyMode
logger = logging.getLogger(__name__)
class SafetyResult:
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_default_adjustment = 0.0
def __init__(self):
self.nsfw_scores = {}
self.special_care_scores = {}
self.is_filtered = False
def add_special_care_score(self, concept_idx, abs_score, threshold):
adjustment = self._default_adjustment
adjusted_score = round(abs_score - threshold + adjustment, 3)
try:
score_name = _SPECIAL_CARE_DESCRIPTIONS[concept_idx]
except LookupError:
score_name = ""
if adjusted_score > 0 and score_name:
logger.debug(
f" 🔞🔞 '{score_name}' abs:{abs_score:.3f} adj:{adjusted_score}"
)
self.special_care_scores[concept_idx] = adjusted_score
def add_nsfw_score(self, concept_idx, abs_score, threshold):
if len(self.special_care_scores) != 3:
raise ValueError("special care scores must be set first")
adjustment = self._default_adjustment
if self.special_care_score > 0:
adjustment += 0.01
adjusted_score = round(abs_score - threshold + adjustment, 3)
try:
score_name = _CONCEPT_DESCRIPTIONS[concept_idx]
except LookupError:
score_name = ""
if adjusted_score > 0 and score_name:
logger.debug(
f" 🔞 '{concept_idx}:{score_name}' abs:{abs_score:.3f} adj:{adjusted_score}"
)
self.nsfw_scores[concept_idx] = adjusted_score
@property
def nsfw_score(self):
return max(self.nsfw_scores.values())
@property
def special_care_score(self):
return max(self.special_care_scores.values())
@property
def special_care_nsfw_score(self):
return min(self.nsfw_score, self.special_care_score)
@property
def is_nsfw(self):
return self.nsfw_score > 0
@property
def is_special_care_nsfw(self):
return self.special_care_nsfw_score > 0
class EnhancedStableDiffusionSafetyChecker(
safety_checker_mod.StableDiffusionSafetyChecker
):
@torch.no_grad()
def forward(self, clip_input):
pooled_output = self.vision_model(clip_input)[1]
image_embeds = self.visual_projection(pooled_output)
special_cos_dist = (
safety_checker_mod.cosine_distance(image_embeds, self.special_care_embeds)
.cpu()
.numpy()
)
cos_dist = (
safety_checker_mod.cosine_distance(image_embeds, self.concept_embeds)
.cpu()
.numpy()
)
safety_results = []
batch_size = image_embeds.shape[0]
for i in range(batch_size):
safety_result = SafetyResult()
for concet_idx in range(len(special_cos_dist[0])):
concept_cos = special_cos_dist[i][concet_idx]
concept_threshold = self.special_care_embeds_weights[concet_idx].item()
safety_result.add_special_care_score(
concet_idx, concept_cos, concept_threshold
)
for concet_idx in range(len(cos_dist[0])):
concept_cos = cos_dist[i][concet_idx]
concept_threshold = self.concept_embeds_weights[concet_idx].item()
safety_result.add_nsfw_score(concet_idx, concept_cos, concept_threshold)
safety_results.append(safety_result)
return safety_results
@lru_cache()
def safety_models():
safety_model_id = "CompVis/stable-diffusion-safety-checker"
monkeypatch_safety_cosine_distance()
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = EnhancedStableDiffusionSafetyChecker.from_pretrained(
safety_model_id
)
return safety_feature_extractor, safety_checker
@lru_cache()
def monkeypatch_safety_cosine_distance():
orig_cosine_distance = safety_checker_mod.cosine_distance
def cosine_distance_float32(image_embeds, text_embeds):
"""
In some environments we need to distance to be in float32
but it was coming as BFloat16.
"""
return orig_cosine_distance(image_embeds, text_embeds).to(torch.float32)
safety_checker_mod.cosine_distance = cosine_distance_float32
_CONCEPT_DESCRIPTIONS = []
_SPECIAL_CARE_DESCRIPTIONS = []
def create_safety_score(img, safety_mode=SafetyMode.STRICT):
if is_blurry(img):
sr = SafetyResult()
sr.add_special_care_score(0, 0, 1)
sr.add_special_care_score(1, 0, 1)
sr.add_special_care_score(2, 0, 1)
sr.add_nsfw_score(0, 0, 1)
return sr
safety_feature_extractor, safety_checker = safety_models()
safety_checker_input = safety_feature_extractor([img], return_tensors="pt")
clip_input = safety_checker_input.pixel_values
safety_result = safety_checker(clip_input)[0]
if safety_result.is_special_care_nsfw:
img.paste((150, 0, 0), (0, 0, img.size[0], img.size[1]))
safety_result.is_filtered = True
logger.info(
f" ⚠️🔞️ Filtering NSFW image. nsfw score: {safety_result.nsfw_score}"
)
elif safety_mode == SafetyMode.STRICT and safety_result.is_nsfw:
img.paste((50, 0, 0), (0, 0, img.size[0], img.size[1]))
safety_result.is_filtered = True
logger.info(
f" ⚠️ Filtering NSFW image. nsfw score: {safety_result.nsfw_score}"
)
return safety_result