mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
177 lines
5.0 KiB
Python
177 lines
5.0 KiB
Python
# pylama:ignore=W0613
|
|
"""
|
|
Logic for parsing mask prompts.
|
|
|
|
Supports
|
|
lower case text descriptions
|
|
Combinations: AND OR NOT ()
|
|
Strength Modifiers: {<operator><number>}
|
|
|
|
Examples:
|
|
fruit
|
|
fruit bowl
|
|
fruit AND NOT pears
|
|
fruit OR bowl
|
|
(pears OR oranges OR peaches){*1.5}
|
|
fruit{-0.1} OR bowl
|
|
|
|
"""
|
|
import operator
|
|
from abc import ABC
|
|
from typing import ClassVar
|
|
|
|
import pyparsing as pp
|
|
import torch
|
|
from kornia.morphology import dilation, erosion
|
|
from pyparsing import ParserElement
|
|
|
|
ParserElement.enablePackrat()
|
|
|
|
|
|
class Mask(ABC):
|
|
def get_mask_for_image(self, img):
|
|
pass
|
|
|
|
def gather_text_descriptions(self):
|
|
return set()
|
|
|
|
def apply_masks(self, mask_cache):
|
|
pass
|
|
|
|
|
|
class SimpleMask(Mask):
|
|
def __init__(self, text):
|
|
self.text = text
|
|
|
|
@classmethod
|
|
def from_simple_prompt(cls, instring, tokens_start, ret_tokens):
|
|
return cls(text=ret_tokens[0])
|
|
|
|
def __repr__(self):
|
|
return f"'{self.text}'"
|
|
|
|
def gather_text_descriptions(self):
|
|
return {self.text}
|
|
|
|
def apply_masks(self, mask_cache):
|
|
return mask_cache[self.text]
|
|
|
|
|
|
class ModifiedMask(Mask):
|
|
ops: ClassVar = {
|
|
"+": operator.add,
|
|
"-": operator.sub,
|
|
"*": operator.mul,
|
|
"/": operator.truediv,
|
|
# '%': operator.mod,
|
|
# '^': operator.xor,
|
|
}
|
|
|
|
def __init__(self, mask, modifier):
|
|
if modifier:
|
|
modifier = modifier.strip("{}")
|
|
self.mask = mask
|
|
self.modifier = modifier
|
|
self.operand_str = modifier[0]
|
|
self.operand = self.ops[self.operand_str]
|
|
self.value = float(modifier[1:])
|
|
|
|
@classmethod
|
|
def from_modifier_parse(cls, instring, tokens_start, ret_tokens):
|
|
return cls(mask=ret_tokens[0][0], modifier=ret_tokens[0][1])
|
|
|
|
def __repr__(self):
|
|
return f"{self.mask!r}{self.modifier}"
|
|
|
|
def gather_text_descriptions(self):
|
|
return self.mask.gather_text_descriptions()
|
|
|
|
def apply_masks(self, mask_cache):
|
|
mask = self.mask.apply_masks(mask_cache)
|
|
if self.operand_str in {"+", "-"}:
|
|
# kernel must be odd
|
|
kernel_size = int(round(self.value))
|
|
kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1
|
|
morph_method = dilation if self.operand_str == "+" else erosion
|
|
mask = mask.unsqueeze_(0).unsqueeze_(0)
|
|
mask = morph_method(mask, torch.ones(kernel_size, kernel_size))
|
|
mask = mask.squeeze()
|
|
return mask
|
|
return torch.clamp(self.operand(mask, self.value), 0, 1)
|
|
|
|
|
|
class NestedMask(Mask):
|
|
def __init__(self, masks, op):
|
|
self.masks = masks
|
|
self.op = op
|
|
|
|
@classmethod
|
|
def from_or(cls, instring, tokens_start, ret_tokens):
|
|
sub_masks = [t for t in ret_tokens[0] if isinstance(t, Mask)]
|
|
return cls(masks=sub_masks, op="OR")
|
|
|
|
@classmethod
|
|
def from_and(cls, instring, tokens_start, ret_tokens):
|
|
sub_masks = [t for t in ret_tokens[0] if isinstance(t, Mask)]
|
|
return cls(masks=sub_masks, op="AND")
|
|
|
|
@classmethod
|
|
def from_not(cls, instring, tokens_start, ret_tokens):
|
|
sub_masks = [t for t in ret_tokens[0] if isinstance(t, Mask)]
|
|
assert len(sub_masks) == 1
|
|
return cls(masks=sub_masks, op="NOT")
|
|
|
|
def __repr__(self):
|
|
if self.op == "NOT":
|
|
return f"NOT {self.masks[0]}"
|
|
sub = f" {self.op} ".join(repr(m) for m in self.masks)
|
|
return f"({sub})"
|
|
|
|
def gather_text_descriptions(self):
|
|
return set().union(*[m.gather_text_descriptions() for m in self.masks])
|
|
|
|
def apply_masks(self, mask_cache):
|
|
submasks = [m.apply_masks(mask_cache) for m in self.masks]
|
|
mask = submasks[0]
|
|
if self.op == "OR":
|
|
for submask in submasks:
|
|
mask = torch.maximum(mask, submask)
|
|
elif self.op == "AND":
|
|
for submask in submasks:
|
|
mask = torch.minimum(mask, submask)
|
|
elif self.op == "NOT":
|
|
mask = 1 - mask
|
|
else:
|
|
msg = f"Invalid operand {self.op}"
|
|
raise ValueError(msg)
|
|
return torch.clamp(mask, 0, 1)
|
|
|
|
|
|
AND = (pp.Literal("AND") | pp.Literal("&")).setName("AND").setResultsName("op")
|
|
OR = (pp.Literal("OR") | pp.Literal("|")).setName("OR").setResultsName("op")
|
|
NOT = (pp.Literal("NOT") | pp.Literal("!")).setName("NOT").setResultsName("op")
|
|
|
|
PROMPT_MODIFIER = (
|
|
pp.Regex(r"{[*/+-]\d+\.?\d*}")
|
|
.setName("prompt_modifier")
|
|
.setResultsName("prompt_modifier")
|
|
)
|
|
PROMPT_TEXT = (
|
|
pp.Regex(r"[a-z0-9]?[a-z0-9 -]*[a-z0-9]")
|
|
.setName("prompt_text")
|
|
.setResultsName("prompt_text")
|
|
)
|
|
SIMPLE_PROMPT = PROMPT_TEXT.setResultsName("simplePrompt")
|
|
SIMPLE_PROMPT.setParseAction(SimpleMask.from_simple_prompt)
|
|
|
|
COMPLEX_PROMPT = pp.infixNotation(
|
|
SIMPLE_PROMPT,
|
|
[
|
|
(PROMPT_MODIFIER, 1, pp.opAssoc.LEFT, ModifiedMask.from_modifier_parse),
|
|
(NOT, 1, pp.opAssoc.RIGHT, NestedMask.from_not),
|
|
(AND, 2, pp.opAssoc.LEFT, NestedMask.from_and),
|
|
(OR, 2, pp.opAssoc.LEFT, NestedMask.from_or),
|
|
],
|
|
)
|
|
MASK_PROMPT = pp.Group(COMPLEX_PROMPT).setResultsName("complexPrompt")
|