imaginAIry/imaginairy/cmds.py
2023-01-21 17:50:31 -08:00

983 lines
26 KiB
Python

import logging
import math
import os.path
import click
from click_shell import shell
from imaginairy import LazyLoadingImage, __version__, config, generate_caption
from imaginairy.api import imagine_image_files
from imaginairy.enhancers.prompt_expansion import expand_prompts
from imaginairy.log_utils import configure_logging
from imaginairy.samplers import SAMPLER_TYPE_OPTIONS
from imaginairy.schema import ImaginePrompt
from imaginairy.suprise_me import create_suprise_me_images
from imaginairy.train import train_diffusion_model
from imaginairy.training_tools.image_prep import (
create_class_images,
get_image_filenames,
prep_images,
)
from imaginairy.training_tools.prune_model import prune_diffusion_ckpt
logger = logging.getLogger(__name__)
@click.command()
@click.argument("prompt_texts", nargs=-1)
@click.option(
"--negative-prompt",
default=config.DEFAULT_NEGATIVE_PROMPT,
show_default=True,
help="Negative prompt. Things to try and exclude from images. Same negative prompt will be used for all images.",
)
@click.option(
"--prompt-strength",
default=7.5,
show_default=True,
help="How closely to follow the prompt. Image looks unnatural at higher values",
)
@click.option(
"--init-image",
metavar="PATH|URL",
help="Starting image.",
)
@click.option(
"--init-image-strength",
default=0.6,
show_default=True,
help="Starting image strength. Between 0 and 1.",
)
@click.option(
"--outdir",
default="./outputs",
show_default=True,
type=click.Path(),
help="Where to write results to.",
)
@click.option(
"-r",
"--repeats",
default=1,
show_default=True,
type=int,
help="How many times to repeat the renders. If you provide two prompts and --repeat=3 then six images will be generated.",
)
@click.option(
"-h",
"--height",
default=None,
show_default=True,
type=int,
help="Image height. Should be multiple of 64.",
)
@click.option(
"-w",
"--width",
default=None,
show_default=True,
type=int,
help="Image width. Should be multiple of 64.",
)
@click.option(
"--steps",
default=None,
type=int,
show_default=True,
help="How many diffusion steps to run. More steps, more detail, but with diminishing returns.",
)
@click.option(
"--seed",
default=None,
type=int,
help="What seed to use for randomness. Allows reproducible image renders.",
)
@click.option("--upscale", is_flag=True)
@click.option("--fix-faces", is_flag=True)
@click.option(
"--fix-faces-fidelity",
default=None,
type=float,
help="How faithful to the original should face enhancement be. 1 = best fidelity, 0 = best looking face.",
)
@click.option(
"--sampler-type",
"--sampler",
default=config.DEFAULT_SAMPLER,
show_default=True,
type=click.Choice(SAMPLER_TYPE_OPTIONS),
help="What sampling strategy to use.",
)
@click.option(
"--log-level",
default="INFO",
show_default=True,
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"]),
help="What level of logs to show.",
)
@click.option(
"--quiet",
"-q",
is_flag=True,
help="Suppress logs. Alias of `--log-level ERROR`.",
)
@click.option(
"--show-work",
default=False,
is_flag=True,
help="Output a debug images to `steps` folder.",
)
@click.option(
"--tile",
is_flag=True,
help="Any images rendered will be tileable in both X and Y directions.",
)
@click.option(
"--tile-x",
is_flag=True,
help="Any images rendered will be tileable in the X direction.",
)
@click.option(
"--tile-y",
is_flag=True,
help="Any images rendered will be tileable in the Y direction.",
)
@click.option(
"--mask-image",
metavar="PATH|URL",
help="A mask to use for inpainting. White gets painted, Black is left alone.",
)
@click.option(
"--mask-prompt",
help=(
"Describe what you want masked and the AI will mask it for you. "
"You can describe complex masks with AND, OR, NOT keywords and parentheses. "
"The strength of each mask can be modified with {*1.5} notation. \n\n"
"Examples: \n"
"car AND (wheels{*1.1} OR trunk OR engine OR windows OR headlights) AND NOT (truck OR headlights){*10}\n"
"fruit|fruit stem"
),
)
@click.option(
"--mask-mode",
default="replace",
show_default=True,
type=click.Choice(["keep", "replace"]),
help="Should we replace the masked area or keep it?",
)
@click.option(
"--mask-modify-original",
default=True,
is_flag=True,
help="After the inpainting is done, apply the changes to a copy of the original image.",
)
@click.option(
"--outpaint",
help=(
"Specify in what directions to expand the image. Values will be snapped such that output image size is multiples of 64. Examples\n"
" `--outpaint up10,down300,left50,right50`\n"
" `--outpaint u10,d300,l50,r50`\n"
" `--outpaint all200`\n"
" `--outpaint a200`\n"
),
default="",
)
@click.option(
"--caption",
default=False,
is_flag=True,
help="Generate a text description of the generated image.",
)
@click.option(
"--precision",
help="Evaluate at this precision.",
type=click.Choice(["full", "autocast"]),
default="autocast",
show_default=True,
)
@click.option(
"--model-weights-path",
"--model",
help=f"Model to use. Should be one of {', '.join(config.MODEL_SHORT_NAMES)}, or a path to custom weights.",
show_default=True,
default=config.DEFAULT_MODEL,
)
@click.option(
"--model-config-path",
help="Model config file to use. If a model name is specified, the appropriate config will be used.",
show_default=True,
default=None,
)
@click.option(
"--prompt-library-path",
help="Path to folder containing phrase lists in txt files. Use txt filename in prompt: {_filename_}.",
type=click.Path(exists=True),
default=None,
multiple=True,
)
@click.option(
"--version",
default=False,
is_flag=True,
help="Print the version and exit.",
)
@click.option(
"--gif", "make_gif", default=False, is_flag=True, help="Generate a gif of the edit."
)
@click.pass_context
def imagine_cmd(
ctx,
prompt_texts,
negative_prompt,
prompt_strength,
init_image,
init_image_strength,
outdir,
repeats,
height,
width,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
sampler_type,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_config_path,
prompt_library_path,
version, # noqa
make_gif,
):
"""Have the AI generate images. alias:imagine."""
return _imagine_cmd(
ctx,
prompt_texts,
negative_prompt,
prompt_strength,
init_image,
init_image_strength,
outdir,
repeats,
height,
width,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
sampler_type,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_config_path,
prompt_library_path,
version, # noqa
make_gif
)
@click.command()
@click.argument("init_image", metavar="PATH|URL", required=True, nargs=1)
@click.argument("prompt_texts", nargs=-1)
@click.option(
"--negative-prompt",
default="",
show_default=True,
help="Negative prompt. Things to try and exclude from images. Same negative prompt will be used for all images.",
)
@click.option(
"--prompt-strength",
default=7.5,
show_default=True,
help="How closely to follow the prompt. Image looks unnatural at higher values",
)
@click.option(
"--init-image",
metavar="PATH|URL",
help="Starting image.",
)
@click.option(
"--outdir",
default="./outputs",
show_default=True,
type=click.Path(),
help="Where to write results to.",
)
@click.option(
"-r",
"--repeats",
default=1,
show_default=True,
type=int,
help="How many times to repeat the renders. If you provide two prompts and --repeat=3 then six images will be generated.",
)
@click.option(
"-h",
"--height",
default=None,
show_default=True,
type=int,
help="Image height. Should be multiple of 64.",
)
@click.option(
"-w",
"--width",
default=None,
show_default=True,
type=int,
help="Image width. Should be multiple of 64.",
)
@click.option(
"--steps",
default=None,
type=int,
show_default=True,
help="How many diffusion steps to run. More steps, more detail, but with diminishing returns.",
)
@click.option(
"--seed",
default=None,
type=int,
help="What seed to use for randomness. Allows reproducible image renders.",
)
@click.option("--upscale", is_flag=True)
@click.option("--fix-faces", is_flag=True)
@click.option(
"--fix-faces-fidelity",
default=1,
type=float,
help="How faithful to the original should face enhancement be. 1 = best fidelity, 0 = best looking face.",
)
@click.option(
"--sampler-type",
"--sampler",
default=config.DEFAULT_SAMPLER,
show_default=True,
type=click.Choice(SAMPLER_TYPE_OPTIONS),
help="What sampling strategy to use.",
)
@click.option(
"--log-level",
default="INFO",
show_default=True,
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"]),
help="What level of logs to show.",
)
@click.option(
"--quiet",
"-q",
is_flag=True,
help="Suppress logs. Alias of `--log-level ERROR`.",
)
@click.option(
"--show-work",
default=False,
is_flag=True,
help="Output a debug images to `steps` folder.",
)
@click.option(
"--tile",
is_flag=True,
help="Any images rendered will be tileable in both X and Y directions.",
)
@click.option(
"--tile-x",
is_flag=True,
help="Any images rendered will be tileable in the X direction.",
)
@click.option(
"--tile-y",
is_flag=True,
help="Any images rendered will be tileable in the Y direction.",
)
@click.option(
"--mask-image",
metavar="PATH|URL",
help="A mask to use for inpainting. White gets painted, Black is left alone.",
)
@click.option(
"--mask-prompt",
help=(
"Describe what you want masked and the AI will mask it for you. "
"You can describe complex masks with AND, OR, NOT keywords and parentheses. "
"The strength of each mask can be modified with {*1.5} notation. \n\n"
"Examples: \n"
"car AND (wheels{*1.1} OR trunk OR engine OR windows OR headlights) AND NOT (truck OR headlights){*10}\n"
"fruit|fruit stem"
),
)
@click.option(
"--mask-mode",
default="replace",
show_default=True,
type=click.Choice(["keep", "replace"]),
help="Should we replace the masked area or keep it?",
)
@click.option(
"--mask-modify-original",
default=True,
is_flag=True,
help="After the inpainting is done, apply the changes to a copy of the original image.",
)
@click.option(
"--outpaint",
help=(
"Specify in what directions to expand the image. Values will be snapped such that output image size is multiples of 64. Examples\n"
" `--outpaint up10,down300,left50,right50`\n"
" `--outpaint u10,d300,l50,r50`\n"
" `--outpaint all200`\n"
" `--outpaint a200`\n"
),
default="",
)
@click.option(
"--caption",
default=False,
is_flag=True,
help="Generate a text description of the generated image.",
)
@click.option(
"--precision",
help="Evaluate at this precision.",
type=click.Choice(["full", "autocast"]),
default="autocast",
show_default=True,
)
@click.option(
"--model-weights-path",
"--model",
help=f"Model to use. Should be one of {', '.join(config.MODEL_SHORT_NAMES)}, or a path to custom weights.",
show_default=True,
default="edit",
)
@click.option(
"--model-config-path",
help="Model config file to use. If a model name is specified, the appropriate config will be used.",
show_default=True,
default=None,
)
@click.option(
"--prompt-library-path",
help="Path to folder containing phrase lists in txt files. Use txt filename in prompt: {_filename_}.",
type=click.Path(exists=True),
default=None,
multiple=True,
)
@click.option(
"--version",
default=False,
is_flag=True,
help="Print the version and exit.",
)
@click.option(
"--gif",
"make_gif",
default=False,
is_flag=True,
help="Generate a gif comparing the original image to the modified one.",
)
@click.option(
"--suprise-me",
"suprise_me",
default=False,
is_flag=True,
help="make some fun edits to the provided image",
)
@click.pass_context
def edit_image( # noqa
ctx,
init_image,
prompt_texts,
negative_prompt,
prompt_strength,
outdir,
repeats,
height,
width,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
sampler_type,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_config_path,
prompt_library_path,
version, # noqa
make_gif,
suprise_me,
):
init_image_strength = 1
if suprise_me and prompt_texts:
raise ValueError("Cannot use suprise_me and prompt_texts together")
if suprise_me:
if quiet:
log_level = "ERROR"
configure_logging(log_level)
create_suprise_me_images(init_image, outdir=outdir, make_gif=make_gif)
return
return _imagine_cmd(
ctx,
prompt_texts,
negative_prompt,
prompt_strength,
init_image,
init_image_strength,
outdir,
repeats,
height,
width,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
sampler_type,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_config_path,
prompt_library_path,
version, # noqa
make_gif,
)
def _imagine_cmd(
ctx,
prompt_texts,
negative_prompt,
prompt_strength,
init_image,
init_image_strength,
outdir,
repeats,
height,
width,
steps,
seed,
upscale,
fix_faces,
fix_faces_fidelity,
sampler_type,
log_level,
quiet,
show_work,
tile,
tile_x,
tile_y,
mask_image,
mask_prompt,
mask_mode,
mask_modify_original,
outpaint,
caption,
precision,
model_weights_path,
model_config_path,
prompt_library_path,
version=False, # noqa
make_gif=False,
):
"""Have the AI generate images. alias:imagine."""
if ctx.invoked_subcommand is not None:
return
if version:
print(__version__)
return
if quiet:
log_level = "ERROR"
configure_logging(log_level)
total_image_count = len(prompt_texts) * repeats
logger.info(
f"🤖🧠 imaginAIry received {len(prompt_texts)} prompt(s) and will repeat them {repeats} times to create {total_image_count} images."
)
if init_image and init_image.startswith("http"):
init_image = LazyLoadingImage(url=init_image)
if mask_image and mask_image.startswith("http"):
mask_image = LazyLoadingImage(url=mask_image)
prompts = []
prompt_expanding_iterators = {}
for _ in range(repeats):
for prompt_text in prompt_texts:
if prompt_text not in prompt_expanding_iterators:
prompt_expanding_iterators[prompt_text] = expand_prompts(
n=math.inf,
prompt_text=prompt_text,
prompt_library_paths=prompt_library_path,
)
prompt_iterator = prompt_expanding_iterators[prompt_text]
if tile:
_tile_mode = "xy"
elif tile_x:
_tile_mode = "x"
elif tile_y:
_tile_mode = "y"
else:
_tile_mode = ""
prompt = ImaginePrompt(
next(prompt_iterator),
negative_prompt=negative_prompt,
prompt_strength=prompt_strength,
init_image=init_image,
init_image_strength=init_image_strength,
seed=seed,
sampler_type=sampler_type,
steps=steps,
height=height,
width=width,
mask_image=mask_image,
mask_prompt=mask_prompt,
mask_mode=mask_mode,
mask_modify_original=mask_modify_original,
outpaint=outpaint,
upscale=upscale,
fix_faces=fix_faces,
fix_faces_fidelity=fix_faces_fidelity,
tile_mode=_tile_mode,
model=model_weights_path,
model_config_path=model_config_path,
)
prompts.append(prompt)
imagine_image_files(
prompts,
outdir=outdir,
record_step_images=show_work,
output_file_extension="jpg",
print_caption=caption,
precision=precision,
make_comparison_gif=make_gif,
)
@shell(prompt="imaginAIry> ", intro="Starting imaginAIry...")
def aimg():
pass
@aimg.command()
def version():
"""Print the version."""
print(__version__)
@click.argument("image_filepaths", nargs=-1)
@aimg.command()
def describe(image_filepaths):
"""Generate text descriptions of images."""
imgs = []
for p in image_filepaths:
if p.startswith("http"):
img = LazyLoadingImage(url=p)
else:
img = LazyLoadingImage(filepath=p)
imgs.append(img)
for img in imgs:
print(generate_caption(img.copy()))
@click.option(
"--concept-label",
help=(
'The concept you are training on. Usually "a photo of [person or thing] [classname]" is what you should use.'
),
required=True,
)
@click.option(
"--concept-images-dir",
type=click.Path(),
required=True,
help="Where to find the pre-processed concept images to train on.",
)
@click.option(
"--class-label",
help=(
'What class of things does the concept belong to. For example, if you are training on "a painting of a George Washington", '
'you might use "a painting of a man" as the class label. We use this to prevent the model from overfitting.'
),
default="a photo of *",
)
@click.option(
"--class-images-dir",
type=click.Path(),
required=True,
help="Where to find the pre-processed class images to train on.",
)
@click.option(
"--n-class-images",
type=int,
default=300,
help="Number of class images to generate.",
)
@click.option(
"--model-weights-path",
"--model",
"model",
help=f"Model to use. Should be one of {', '.join(config.MODEL_SHORT_NAMES)}, or a path to custom weights.",
show_default=True,
default=config.DEFAULT_MODEL,
)
@click.option(
"--person",
"is_person",
is_flag=True,
help="Set if images are of a person. Will use face detection and enhancement.",
)
@click.option(
"-y",
"preconfirmed",
is_flag=True,
default=False,
help="Bypass input confirmations.",
)
@click.option(
"--skip-prep",
is_flag=True,
default=False,
help="Skip the image preparation step.",
)
@click.option(
"--skip-class-img-gen",
is_flag=True,
default=False,
help="Skip the class image generation step.",
)
@aimg.command()
def train_concept(
concept_label,
concept_images_dir,
class_label,
class_images_dir,
n_class_images,
model,
is_person,
preconfirmed,
skip_prep,
skip_class_img_gen,
):
"""
Teach the model a new concept (a person, thing, style, etc).
Provided a directory of concept images, a concept token, and a class token, this command will train the model
to generate images of that concept.
\b
This happens in a 3-step process:
1. Cropping and resizing your training images. If --person is set we crop to include the face.
2. Generating a set of class images to train on. This helps prevent overfitting.
3. Training the model on the concept and class images.
The output of this command is a new model weights file that you can use with the --model option.
\b
## Instructions
1. Gather a set of images of the concept you want to train on. They should show the subject from a variety of angles
and in a variety of situations.
2. Train the model.
- Concept label: For a person, firstnamelastname should be fine.
- If all the training images are photos you should add "a photo of" to the beginning of the concept label.
- Class label: This is the category of the things beings trained on. For people this is typically "person", "man"
or "woman".
- If all the training images are photos you should add "a photo of" to the beginning of the class label.
- CLass images will be generated for you if you do not provide them.
3. Stop training before it overfits. I haven't figured this out yet.
For example, if you were training on photos of a man named bill hamilton you could run the following:
\b
aimg train-concept \\
--person \\
--concept-label "photo of billhamilton man" \\
--concept-images-dir ./images/billhamilton \\
--class-label "photo of a man" \\
--class-images-dir ./images/man
When you use the model you should prompt with `firstnamelastname classname` (e.g. `billhamilton man`).
You can find a lot of relevant instructions here: https://github.com/JoePenna/Dreambooth-Stable-Diffusion
"""
configure_logging()
target_size = 512
# Step 1. Crop and enhance the training images
prepped_images_path = os.path.join(concept_images_dir, "prepped-images")
image_filenames = get_image_filenames(concept_images_dir)
click.secho(
f'\n🤖🧠 Training "{concept_label}" based on {len(image_filenames)} images.\n'
)
if not skip_prep:
msg = (
f"Creating cropped copies of the {len(image_filenames)} concept images\n"
f" Is Person: {is_person}\n"
f" Source: {concept_images_dir}\n"
f" Dest: {prepped_images_path}\n"
)
logger.info(msg)
if not is_person:
click.secho("⚠️ the --person flag was not set. ", fg="yellow")
if not preconfirmed and not click.confirm("Continue?"):
return
prep_images(
images_dir=concept_images_dir, is_person=is_person, target_size=target_size
)
concept_images_dir = prepped_images_path
if not skip_class_img_gen:
# Step 2. Generate class images
class_image_filenames = get_image_filenames(class_images_dir)
images_needed = max(n_class_images - len(class_image_filenames), 0)
logger.info(f"Generating {n_class_images} class images in {class_images_dir}")
logger.info(
f"{len(class_image_filenames)} existing class images found so only generating {images_needed}."
)
if not preconfirmed and not click.confirm("Continue?"):
return
create_class_images(
class_description=class_label,
output_folder=class_images_dir,
num_images=n_class_images,
)
logger.info("Training the model...")
if not preconfirmed and not click.confirm("Continue?"):
return
# Step 3. Train the model
train_diffusion_model(
concept_label=concept_label,
concept_images_dir=concept_images_dir,
class_label=class_label,
class_images_dir=class_images_dir,
weights_location=model,
logdir="logs",
learning_rate=1e-6,
accumulate_grad_batches=32,
)
@click.argument(
"images_dir",
required=True,
)
@click.option(
"--person",
"is_person",
is_flag=True,
help="Set if images are of a person. Will use face detection and enhancement.",
)
@click.option(
"--target-size",
default=512,
type=int,
show_default=True,
)
@aimg.command("prep-images")
def prepare_images(images_dir, is_person, target_size):
"""
Prepare a folder of images for training.
Prepped images will be written to the `prepped-images` subfolder.
All images will be cropped and resized to (default) 512x512.
Upscaling and face enhancement will be applied as needed to smaller images.
Examples:
aimg prep-images --person ./images/selfies
aimg prep-images ./images/toy-train
"""
configure_logging()
prep_images(images_dir=images_dir, is_person=is_person, target_size=target_size)
@click.argument("ckpt_paths", nargs=-1)
@aimg.command("prune-ckpt")
def prune_ckpt(ckpt_paths):
"""
Prune a checkpoint file.
This will remove the optimizer state from the checkpoint file.
This is useful if you want to use the checkpoint file for inference and save a lot of disk space
Example:
aimg prune-ckpt ./path/to/checkpoint.ckpt
"""
click.secho("Pruning checkpoint files...")
configure_logging()
for p in ckpt_paths:
prune_diffusion_ckpt(p)
aimg.add_command(imagine_cmd, name="imagine")
aimg.add_command(edit_image, name="edit")
if __name__ == "__main__":
imagine_cmd() # noqa
# from cProfile import Profile
# from pyprof2calltree import convert, visualize
# profiler = Profile()
# profiler.runctx("imagine_cmd.main(standalone_mode=False)", locals(), globals())
# convert(profiler.getstats(), 'imagine.kgrind')
# visualize(profiler.getstats())