imaginAIry/tests/conftest.py
Bryce 015088507f feature/refactor/fix: better defaults. correct version in metadata
- feature: use different default steps and image sizes depending on sampler and model selceted
- fix: #110 use proper version in image metadata
- refactor: samplers all have their own class that inherits from ImageSampler
2022-11-26 16:18:08 -08:00

137 lines
3.9 KiB
Python

import logging
import os
import sys
from functools import partialmethod
from shutil import rmtree
import pytest
import responses
from tqdm import tqdm
from urllib3 import HTTPConnectionPool
from imaginairy import api
from imaginairy.log_utils import suppress_annoying_logs_and_warnings
from imaginairy.samplers import SAMPLER_TYPE_OPTIONS
from imaginairy.utils import (
fix_torch_group_norm,
fix_torch_nn_layer_norm,
get_device,
platform_appropriate_autocast,
)
from tests import TESTS_FOLDER
if "pytest" in str(sys.argv):
suppress_annoying_logs_and_warnings()
logger = logging.getLogger(__name__)
SAMPLERS_FOR_TESTING = SAMPLER_TYPE_OPTIONS
if get_device() == "mps:0":
SAMPLERS_FOR_TESTING = ["plms", "k_euler_a"]
elif get_device() == "cpu":
SAMPLERS_FOR_TESTING = []
@pytest.fixture(scope="session", autouse=True)
def pre_setup():
api.IMAGINAIRY_SAFETY_MODE = "disabled"
suppress_annoying_logs_and_warnings()
test_output_folder = f"{TESTS_FOLDER}/test_output"
# delete the testoutput folder and recreate it
try:
rmtree(test_output_folder)
except FileNotFoundError:
pass
os.makedirs(test_output_folder, exist_ok=True)
orig_urlopen = HTTPConnectionPool.urlopen
def urlopen_tattle(self, method, url, *args, **kwargs):
# traceback.print_stack()
# current_test = os.environ.get("PYTEST_CURRENT_TEST", "")
# print(f"{current_test} {method} {self.host}{url}")
result = orig_urlopen(self, method, url, *args, **kwargs)
# raise HTTPError("NO NETWORK CALLS")
return result
HTTPConnectionPool.urlopen = urlopen_tattle
tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
# real_randn = torch.randn
# def randn_tattle(*args, **kwargs):
# print("RANDN CALL RANDN CALL")
# traceback.print_stack()
# return real_randn(*args, **kwargs)
#
# torch.randn = randn_tattle
with fix_torch_nn_layer_norm(), fix_torch_group_norm(), platform_appropriate_autocast():
yield
@pytest.fixture(autouse=True)
def reset_get_device():
get_device.cache_clear()
@pytest.fixture()
def filename_base_for_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.name}_"
return filename_base
@pytest.fixture()
def filename_base_for_orig_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.originalname}_"
return filename_base
@pytest.fixture(params=SAMPLERS_FOR_TESTING)
def sampler_type(request):
return request.param
@pytest.fixture
def mocked_responses():
with responses.RequestsMock() as rsps:
yield rsps
def pytest_addoption(parser):
parser.addoption(
"--subset",
action="store",
default=None,
help="Runs an exclusive subset of tests: '1/3', '2/3', '3/3'. Useful for distributed testing",
)
@pytest.hookimpl()
def pytest_collection_modifyitems(config, items):
"""Only select a subset of tests to run, based on the --subset option."""
filtered_node_ids = set()
node_ids = [f.nodeid for f in items]
node_ids.sort()
subset = config.getoption("--subset")
if subset:
partition_no, total_partitions = subset.split("/")
partition_no, total_partitions = int(partition_no), int(total_partitions)
if partition_no < 1 or partition_no > total_partitions:
raise ValueError("Invalid subset")
for i, node_id in enumerate(node_ids):
if i % total_partitions == partition_no - 1:
filtered_node_ids.add(node_id)
items[:] = [i for i in items if i.nodeid in filtered_node_ids]
print(
f"Running subset {partition_no}/{total_partitions} {len(filtered_node_ids)} tests:"
)
filtered_node_ids = list(filtered_node_ids)
filtered_node_ids.sort()
for n in filtered_node_ids:
print(f" {n}")