You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
imaginAIry/imaginairy/vendored/facexlib/assessment/hyperiqa_net.py

299 lines
11 KiB
Python

import torch as torch
import torch.nn as nn
from torch.nn import functional as F
class HyperIQA(nn.Module):
"""
Combine the hypernet and target network within a network.
"""
def __init__(self, *args):
super(HyperIQA, self).__init__()
self.hypernet = HyperNet(*args)
def forward(self, img):
net_params = self.hypernet(img)
# build the target network
target_net = TargetNet(net_params)
for param in target_net.parameters():
param.requires_grad = False
# predict the face quality
pred = target_net(net_params['target_in_vec'])
return pred
class HyperNet(nn.Module):
"""
Hyper network for learning perceptual rules.
Args:
lda_out_channels: local distortion aware module output size.
hyper_in_channels: input feature channels for hyper network.
target_in_size: input vector size for target network.
target_fc(i)_size: fully connection layer size of target network.
feature_size: input feature map width/height for hyper network.
Note:
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'. # noqa E501
"""
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size,
target_fc3_size, target_fc4_size, feature_size):
super(HyperNet, self).__init__()
self.hyperInChn = hyper_in_channels
self.target_in_size = target_in_size
self.f1 = target_fc1_size
self.f2 = target_fc2_size
self.f3 = target_fc3_size
self.f4 = target_fc4_size
self.feature_size = feature_size
self.res = resnet50_backbone(lda_out_channels, target_in_size)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
# Conv layers for resnet output features
self.conv1 = nn.Sequential(
nn.Conv2d(2048, 1024, 1, padding=(0, 0)), nn.ReLU(inplace=True), nn.Conv2d(1024, 512, 1, padding=(0, 0)),
nn.ReLU(inplace=True), nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)), nn.ReLU(inplace=True))
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases
self.fc1w_conv = nn.Conv2d(
self.hyperInChn, int(self.target_in_size * self.f1 / feature_size**2), 3, padding=(1, 1))
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size**2), 3, padding=(1, 1))
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size**2), 3, padding=(1, 1))
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size**2), 3, padding=(1, 1))
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
def forward(self, img):
feature_size = self.feature_size
res_out = self.res(img)
# input vector for target net
target_in_vec = res_out['target_in_vec'].view(-1, self.target_in_size, 1, 1)
# input features for hyper net
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).view(-1, self.hyperInChn, feature_size, feature_size)
# generating target net weights & biases
target_fc1w = self.fc1w_conv(hyper_in_feat).view(-1, self.f1, self.target_in_size, 1, 1)
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f1)
target_fc2w = self.fc2w_conv(hyper_in_feat).view(-1, self.f2, self.f1, 1, 1)
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f2)
target_fc3w = self.fc3w_conv(hyper_in_feat).view(-1, self.f3, self.f2, 1, 1)
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f3)
target_fc4w = self.fc4w_conv(hyper_in_feat).view(-1, self.f4, self.f3, 1, 1)
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, self.f4)
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1, self.f4, 1, 1)
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).view(-1, 1)
out = {}
out['target_in_vec'] = target_in_vec
out['target_fc1w'] = target_fc1w
out['target_fc1b'] = target_fc1b
out['target_fc2w'] = target_fc2w
out['target_fc2b'] = target_fc2b
out['target_fc3w'] = target_fc3w
out['target_fc3b'] = target_fc3b
out['target_fc4w'] = target_fc4w
out['target_fc4b'] = target_fc4b
out['target_fc5w'] = target_fc5w
out['target_fc5b'] = target_fc5b
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNetBackbone(nn.Module):
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
super(ResNetBackbone, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# local distortion aware module
self.lda1_pool = nn.Sequential(
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
self.lda2_pool = nn.Sequential(
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
self.lda3_pool = nn.Sequential(
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
self.lda4_pool = nn.AvgPool2d(7, stride=7)
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
# the same effect as lda operation in the paper, but save much more memory
lda_1 = self.lda1_fc(self.lda1_pool(x).view(x.size(0), -1))
x = self.layer2(x)
lda_2 = self.lda2_fc(self.lda2_pool(x).view(x.size(0), -1))
x = self.layer3(x)
lda_3 = self.lda3_fc(self.lda3_pool(x).view(x.size(0), -1))
x = self.layer4(x)
lda_4 = self.lda4_fc(self.lda4_pool(x).view(x.size(0), -1))
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
out = {}
out['hyper_in_feat'] = x
out['target_in_vec'] = vec
return out
def resnet50_backbone(lda_out_channels, in_chn, **kwargs):
"""Constructs a ResNet-50 model_hyper."""
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
return model
class TargetNet(nn.Module):
"""
Target network for quality prediction.
"""
def __init__(self, paras):
super(TargetNet, self).__init__()
self.l1 = nn.Sequential(
TargetFC(paras['target_fc1w'], paras['target_fc1b']),
nn.Sigmoid(),
)
self.l2 = nn.Sequential(
TargetFC(paras['target_fc2w'], paras['target_fc2b']),
nn.Sigmoid(),
)
self.l3 = nn.Sequential(
TargetFC(paras['target_fc3w'], paras['target_fc3b']),
nn.Sigmoid(),
)
self.l4 = nn.Sequential(
TargetFC(paras['target_fc4w'], paras['target_fc4b']),
nn.Sigmoid(),
TargetFC(paras['target_fc5w'], paras['target_fc5b']),
)
def forward(self, x):
q = self.l1(x)
# q = F.dropout(q)
q = self.l2(q)
q = self.l3(q)
q = self.l4(q).squeeze()
return q
class TargetFC(nn.Module):
"""
Fully connection operations for target net
Note:
Weights & biases are different for different images in a batch,
thus here we use group convolution for calculating images in a batch with individual weights & biases.
"""
def __init__(self, weight, bias):
super(TargetFC, self).__init__()
self.weight = weight
self.bias = bias
def forward(self, input_):
input_re = input_.view(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
weight_re = self.weight.view(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2],
self.weight.shape[3], self.weight.shape[4])
bias_re = self.bias.view(self.bias.shape[0] * self.bias.shape[1])
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
return out.view(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])