imaginAIry/imaginairy/vendored/refiners/foundationals/segment_anything/image_encoder.py
Bryce 55e27160f5 build: vendorize refiners
so we can still work in conda envs
2024-01-02 22:02:31 -08:00

369 lines
14 KiB
Python

import torch
from torch import Tensor, device as Device, dtype as DType, nn
import imaginairy.vendored.refiners.fluxion.layers as fl
from imaginairy.vendored.refiners.fluxion.context import Contexts
from imaginairy.vendored.refiners.fluxion.utils import pad
class PatchEncoder(fl.Chain):
def __init__(
self,
in_channels: int,
out_channels: int,
patch_size: int = 16,
use_bias: bool = True,
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_size = patch_size
self.use_bias = use_bias
super().__init__(
fl.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=(self.patch_size, self.patch_size),
stride=(self.patch_size, self.patch_size),
use_bias=self.use_bias,
device=device,
dtype=dtype,
),
fl.Permute(0, 2, 3, 1),
)
class PositionalEncoder(fl.Residual):
def __init__(
self,
embedding_dim: int,
image_embedding_size: tuple[int, int],
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
self.embedding_dim = embedding_dim
self.image_embedding_size = image_embedding_size
super().__init__(
fl.Parameter(
image_embedding_size[0],
image_embedding_size[1],
embedding_dim,
device=device,
dtype=dtype,
),
)
class RelativePositionAttention(fl.WeightedModule):
def __init__(
self,
embedding_dim: int,
num_heads: int,
spatial_size: tuple[int, int],
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.head_dim = embedding_dim // num_heads
self.spatial_size = spatial_size
self.horizontal_embedding = nn.Parameter(
data=torch.zeros(2 * spatial_size[0] - 1, self.head_dim, device=device, dtype=dtype)
)
self.vertical_embedding = nn.Parameter(
data=torch.zeros(2 * spatial_size[1] - 1, self.head_dim, device=device, dtype=dtype)
)
@property
def device(self) -> Device:
return self.horizontal_embedding.device
@property
def dtype(self) -> DType:
return self.horizontal_embedding.dtype
def forward(self, x: Tensor) -> Tensor:
batch, height, width, _ = x.shape
x = (
x.reshape(batch, width * height, 3, self.num_heads, -1)
.permute(2, 0, 3, 1, 4)
.reshape(3, batch * self.num_heads, width * height, -1)
)
query, key, value = x.unbind(dim=0)
horizontal_relative_embedding, vertical_relative_embedding = self.compute_relative_embedding(x=query)
attention = (query * self.head_dim**-0.5) @ key.transpose(dim0=-2, dim1=-1)
# Order of operations is important here
attention = (
(attention.reshape(-1, height, width, height, width) + vertical_relative_embedding)
+ horizontal_relative_embedding
).reshape(attention.shape)
attention = attention.softmax(dim=-1)
attention = attention @ value
attention = (
attention.reshape(batch, self.num_heads, height, width, -1)
.permute(0, 2, 3, 1, 4)
.reshape(batch, height, width, -1)
)
return attention
def compute_relative_coords(self, size: int) -> Tensor:
x, y = torch.meshgrid(torch.arange(end=size), torch.arange(end=size), indexing="ij")
return x - y + size - 1
def compute_relative_embedding(self, x: Tensor) -> tuple[Tensor, Tensor]:
width, height = self.spatial_size
horizontal_coords = self.compute_relative_coords(size=width)
vertical_coords = self.compute_relative_coords(size=height)
horizontal_positional_embedding = self.horizontal_embedding[horizontal_coords]
vertical_positional_embedding = self.vertical_embedding[vertical_coords]
x = x.reshape(x.shape[0], width, height, -1)
horizontal_relative_embedding = torch.einsum("bhwc,wkc->bhwk", x, horizontal_positional_embedding).unsqueeze(
dim=-2
)
vertical_relative_embedding = torch.einsum("bhwc,hkc->bhwk", x, vertical_positional_embedding).unsqueeze(dim=-1)
return horizontal_relative_embedding, vertical_relative_embedding
class FusedSelfAttention(fl.Chain):
def __init__(
self,
embedding_dim: int = 768,
spatial_size: tuple[int, int] = (64, 64),
num_heads: int = 1,
use_bias: bool = True,
is_causal: bool = False,
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
assert (
embedding_dim % num_heads == 0
), f"Embedding dim (embedding_dim={embedding_dim}) must be divisible by num heads (num_heads={num_heads})"
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.use_bias = use_bias
self.is_causal = is_causal
super().__init__(
fl.Linear(
in_features=self.embedding_dim,
out_features=3 * self.embedding_dim,
bias=self.use_bias,
device=device,
dtype=dtype,
),
RelativePositionAttention(
embedding_dim=self.embedding_dim,
num_heads=self.num_heads,
spatial_size=spatial_size,
device=device,
dtype=dtype,
),
fl.Linear(
in_features=self.embedding_dim,
out_features=self.embedding_dim,
bias=True,
device=device,
dtype=dtype,
),
)
class FeedForward(fl.Chain):
def __init__(
self,
embedding_dim: int,
feedforward_dim: int,
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
self.embedding_dim = embedding_dim
self.feedforward_dim = feedforward_dim
super().__init__(
fl.Linear(
in_features=self.embedding_dim,
out_features=self.feedforward_dim,
bias=True,
device=device,
dtype=dtype,
),
fl.GeLU(),
fl.Linear(
in_features=self.feedforward_dim,
out_features=self.embedding_dim,
bias=True,
device=device,
dtype=dtype,
),
)
class WindowPartition(fl.ContextModule):
def __init__(self) -> None:
super().__init__()
def forward(self, x: Tensor) -> Tensor:
batch, height, width, channels = x.shape
context = self.use_context(context_name="window_partition")
context.update({"original_height": height, "original_width": width})
window_size = context["window_size"]
padding_height = (window_size - height % window_size) % window_size
padding_width = (window_size - width % window_size) % window_size
if padding_height > 0 or padding_width > 0:
x = pad(x=x, pad=(0, 0, 0, padding_width, 0, padding_height))
padded_height, padded_width = height + padding_height, width + padding_width
context.update({"padded_height": padded_height, "padded_width": padded_width})
x = x.view(batch, padded_height // window_size, window_size, padded_width // window_size, window_size, channels)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, channels)
return windows
class WindowMerge(fl.ContextModule):
def __init__(self) -> None:
super().__init__()
def forward(self, x: Tensor) -> Tensor:
context = self.use_context(context_name="window_partition")
window_size = context["window_size"]
padded_height, padded_width = context["padded_height"], context["padded_width"]
original_height, original_width = context["original_height"], context["original_width"]
batch_size = x.shape[0] // (padded_height * padded_width // window_size // window_size)
x = x.view(batch_size, padded_height // window_size, padded_width // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, padded_height, padded_width, -1)
if padded_height > original_height or padded_width > original_width:
x = x[:, :original_height, :original_width, :].contiguous()
return x
class TransformerLayer(fl.Chain):
def __init__(
self,
embedding_dim: int,
num_heads: int,
feedforward_dim: int,
image_embedding_size: tuple[int, int],
window_size: int | None = None,
layer_norm_eps: float = 1e-6,
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.feedforward_dim = feedforward_dim
self.window_size = window_size
self.layer_norm_eps = layer_norm_eps
self.image_embedding_size = image_embedding_size
attention_spatial_size = (window_size, window_size) if window_size is not None else image_embedding_size
reshape_or_merge = (
WindowMerge()
if self.window_size is not None
else fl.Reshape(self.image_embedding_size[0], self.image_embedding_size[1], embedding_dim)
)
super().__init__(
fl.Residual(
fl.LayerNorm(normalized_shape=embedding_dim, eps=self.layer_norm_eps, device=device, dtype=dtype),
WindowPartition() if self.window_size is not None else fl.Identity(),
FusedSelfAttention(
embedding_dim=embedding_dim,
num_heads=num_heads,
spatial_size=attention_spatial_size,
device=device,
dtype=dtype,
),
reshape_or_merge,
),
fl.Residual(
fl.LayerNorm(normalized_shape=embedding_dim, eps=self.layer_norm_eps, device=device, dtype=dtype),
FeedForward(embedding_dim=embedding_dim, feedforward_dim=feedforward_dim, device=device, dtype=dtype),
),
)
def init_context(self) -> Contexts:
return {"window_partition": {"window_size": self.window_size}}
class Neck(fl.Chain):
def __init__(self, in_channels: int = 768, device: Device | str | None = None, dtype: DType | None = None) -> None:
self.in_channels = in_channels
super().__init__(
fl.Permute(0, 3, 1, 2),
fl.Conv2d(
in_channels=self.in_channels,
out_channels=256,
kernel_size=1,
use_bias=False,
device=device,
dtype=dtype,
),
fl.LayerNorm2d(channels=256, device=device, dtype=dtype),
fl.Conv2d(
in_channels=256,
out_channels=256,
kernel_size=3,
padding=1,
use_bias=False,
device=device,
dtype=dtype,
),
fl.LayerNorm2d(channels=256, device=device, dtype=dtype),
)
class Transformer(fl.Chain):
pass
class SAMViT(fl.Chain):
def __init__(
self,
embedding_dim: int,
num_layers: int,
num_heads: int,
global_attention_indices: tuple[int, ...] | None = None,
device: Device | str | None = None,
dtype: DType | None = None,
) -> None:
self.embedding_dim = embedding_dim
self.num_layers = num_layers
self.num_heads = num_heads
self.image_size = (1024, 1024)
self.patch_size = 16
self.window_size = 14
self.image_embedding_size = (self.image_size[0] // self.patch_size, self.image_size[1] // self.patch_size)
self.feed_forward_dim = 4 * self.embedding_dim
self.global_attention_indices = global_attention_indices or tuple()
super().__init__(
PatchEncoder(
in_channels=3, out_channels=embedding_dim, patch_size=self.patch_size, device=device, dtype=dtype
),
PositionalEncoder(
embedding_dim=embedding_dim, image_embedding_size=self.image_embedding_size, device=device, dtype=dtype
),
Transformer(
TransformerLayer(
embedding_dim=embedding_dim,
num_heads=num_heads,
feedforward_dim=self.feed_forward_dim,
window_size=self.window_size if i not in self.global_attention_indices else None,
image_embedding_size=self.image_embedding_size,
device=device,
dtype=dtype,
)
for i in range(num_layers)
),
Neck(in_channels=embedding_dim, device=device, dtype=dtype),
)
class SAMViTH(SAMViT):
def __init__(self, device: Device | str | None = None, dtype: DType | None = None) -> None:
super().__init__(
embedding_dim=1280,
num_layers=32,
num_heads=16,
global_attention_indices=(7, 15, 23, 31),
device=device,
dtype=dtype,
)