imaginAIry/imaginairy/api/generate_compvis.py
Bryce 55e27160f5 build: vendorize refiners
so we can still work in conda envs
2024-01-02 22:02:31 -08:00

553 lines
21 KiB
Python

import logging
from typing import TYPE_CHECKING, Any
from imaginairy.api.generate import IMAGINAIRY_SAFETY_MODE
from imaginairy.utils import seed_everything
from imaginairy.utils.img_utils import calc_scale_to_fit_within, combine_image
from imaginairy.utils.named_resolutions import normalize_image_size
if TYPE_CHECKING:
from imaginairy.schema import ImaginePrompt
logger = logging.getLogger(__name__)
def _generate_single_image(
prompt: "ImaginePrompt",
debug_img_callback=None,
progress_img_callback=None,
progress_img_interval_steps=3,
progress_img_interval_min_s=0.1,
add_caption=False,
# controlnet, finetune, naive, auto
inpaint_method="finetune",
return_latent=False,
dtype=None,
):
import torch.nn
from PIL import Image, ImageOps
from imaginairy.enhancers.clip_masking import get_img_mask
from imaginairy.enhancers.describe_image_blip import generate_caption
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
from imaginairy.enhancers.upscale_realesrgan import upscale_image
from imaginairy.modules.midas.api import torch_image_to_depth_map
from imaginairy.samplers import SOLVER_LOOKUP
from imaginairy.samplers.editing import CFGEditingDenoiser
from imaginairy.schema import (
ControlInput,
ImagineResult,
LazyLoadingImage,
MaskMode,
)
from imaginairy.utils import get_device, randn_seeded
from imaginairy.utils.img_utils import (
add_caption_to_image,
pillow_fit_image_within,
pillow_img_to_torch_image,
pillow_mask_to_latent_mask,
torch_img_to_pillow_img,
)
from imaginairy.utils.log_utils import (
ImageLoggingContext,
log_conditioning,
log_img,
log_latent,
)
from imaginairy.utils.model_manager import (
get_diffusion_model,
get_model_default_image_size,
)
from imaginairy.utils.outpaint import (
outpaint_arg_str_parse,
prepare_image_for_outpaint,
)
from imaginairy.utils.safety import create_safety_score
latent_channels = 4
downsampling_factor = 8
batch_size = 1
# global _most_recent_result
# handle prompt pulling in previous values
# if isinstance(prompt.init_image, str) and prompt.init_image.startswith("*prev"):
# _, img_type = prompt.init_image.strip("*").split(".")
# prompt.init_image = _most_recent_result.images[img_type]
# if isinstance(prompt.mask_image, str) and prompt.mask_image.startswith("*prev"):
# _, img_type = prompt.mask_image.strip("*").split(".")
# prompt.mask_image = _most_recent_result.images[img_type]
prompt = prompt.make_concrete_copy()
control_modes = []
control_inputs = prompt.control_inputs or []
control_inputs = control_inputs.copy()
for_inpainting = bool(prompt.mask_image or prompt.mask_prompt or prompt.outpaint)
if control_inputs:
control_modes = [c.mode for c in prompt.control_inputs]
if inpaint_method == "auto":
if prompt.model_weights in {"SD-1.5"}:
inpaint_method = "finetune"
else:
inpaint_method = "controlnet"
if for_inpainting and inpaint_method == "controlnet":
control_modes.append("inpaint")
model = get_diffusion_model(
weights_location=prompt.model_weights,
config_path=prompt.model_architecture,
control_weights_locations=control_modes,
half_mode=dtype == torch.float16,
for_inpainting=for_inpainting and inpaint_method == "finetune",
)
is_controlnet_model = hasattr(model, "control_key")
progress_latents = []
def latent_logger(latents):
progress_latents.append(latents)
with ImageLoggingContext(
prompt=prompt,
model=model,
debug_img_callback=debug_img_callback,
progress_img_callback=progress_img_callback,
progress_img_interval_steps=progress_img_interval_steps,
progress_img_interval_min_s=progress_img_interval_min_s,
progress_latent_callback=latent_logger
if prompt.collect_progress_latents
else None,
) as lc:
seed_everything(prompt.seed)
model.tile_mode(prompt.tile_mode)
with lc.timing("conditioning"):
# need to expand if doing batches
neutral_conditioning = _prompts_to_embeddings(prompt.negative_prompt, model)
_prompts_to_embeddings("", model)
log_conditioning(neutral_conditioning, "neutral conditioning")
if prompt.conditioning is not None:
positive_conditioning = prompt.conditioning
else:
positive_conditioning = _prompts_to_embeddings(prompt.prompts, model)
log_conditioning(positive_conditioning, "positive conditioning")
shape = [
batch_size,
latent_channels,
prompt.height // downsampling_factor,
prompt.width // downsampling_factor,
]
SolverCls = SOLVER_LOOKUP[prompt.solver_type.lower()]
solver = SolverCls(model)
mask_image: Image.Image | LazyLoadingImage | None = None
mask_latent = mask_image_orig = mask_grayscale = None
init_latent: torch.Tensor | None = None
t_enc = None
starting_image = None
denoiser_cls = None
c_cat = []
c_cat_neutral = None
result_images: dict[str, torch.Tensor | Image.Image | None] = {}
assert prompt.seed is not None
seed_everything(prompt.seed)
noise = randn_seeded(seed=prompt.seed, size=shape).to(get_device())
control_strengths = []
if prompt.init_image:
starting_image = prompt.init_image
assert prompt.init_image_strength is not None
generation_strength = 1 - prompt.init_image_strength
if model.cond_stage_key == "edit" or generation_strength >= 1:
t_enc = None
else:
t_enc = int(prompt.steps * generation_strength)
if prompt.mask_prompt:
mask_image, mask_grayscale = get_img_mask(
starting_image, prompt.mask_prompt, threshold=0.1
)
elif prompt.mask_image:
mask_image = prompt.mask_image.convert("L")
if prompt.outpaint:
outpaint_kwargs = outpaint_arg_str_parse(prompt.outpaint)
starting_image, mask_image = prepare_image_for_outpaint(
starting_image, mask_image, **outpaint_kwargs
)
assert starting_image is not None
init_image = pillow_fit_image_within(
starting_image,
max_height=prompt.height,
max_width=prompt.width,
)
init_image_t = pillow_img_to_torch_image(init_image).to(get_device())
init_latent = model.get_first_stage_encoding(
model.encode_first_stage(init_image_t)
)
assert init_latent is not None
shape = list(init_latent.shape)
log_latent(init_latent, "init_latent")
if mask_image is not None:
mask_image = pillow_fit_image_within(
mask_image,
max_height=prompt.height,
max_width=prompt.width,
convert="L",
)
log_img(mask_image, "init mask")
if prompt.mask_mode == MaskMode.REPLACE:
mask_image = ImageOps.invert(mask_image)
mask_image_orig = mask_image
log_img(mask_image, "latent_mask")
mask_latent = pillow_mask_to_latent_mask(
mask_image, downsampling_factor=downsampling_factor
).to(get_device())
if inpaint_method == "controlnet":
result_images["control-inpaint"] = mask_image
control_inputs.append(
ControlInput(mode="inpaint", image=mask_image)
)
assert prompt.seed is not None
seed_everything(prompt.seed)
noise = randn_seeded(seed=prompt.seed, size=list(init_latent.shape)).to(
get_device()
)
# noise = noise[:, :, : init_latent.shape[2], : init_latent.shape[3]]
# schedule = NoiseSchedule(
# model_num_timesteps=model.num_timesteps,
# ddim_num_steps=prompt.steps,
# model_alphas_cumprod=model.alphas_cumprod,
# ddim_discretize="uniform",
# )
# if generation_strength >= 1:
# # prompt strength gets converted to time encodings,
# # which means you can't get to true 0 without this hack
# # (or setting steps=1000)
# init_latent_noised = noise
# else:
# init_latent_noised = noise_an_image(
# init_latent,
# torch.tensor([t_enc - 1]).to(get_device()),
# schedule=schedule,
# noise=noise,
# )
if hasattr(model, "depth_stage_key"):
# depth model
depth_t = torch_image_to_depth_map(init_image_t)
depth_latent = torch.nn.functional.interpolate(
depth_t,
size=shape[2:],
mode="bicubic",
align_corners=False,
)
result_images["depth_image"] = depth_t
c_cat.append(depth_latent)
elif is_controlnet_model:
from imaginairy.img_processors.control_modes import CONTROL_MODES
for control_input in control_inputs:
if control_input.image_raw is not None:
control_image = control_input.image_raw
elif control_input.image is not None:
control_image = control_input.image
else:
raise RuntimeError("Control image must be provided")
assert control_image is not None
control_image = control_image.convert("RGB")
log_img(control_image, "control_image_input")
assert control_image is not None
control_image_input = pillow_fit_image_within(
control_image,
max_height=prompt.height,
max_width=prompt.width,
)
control_image_input_t = pillow_img_to_torch_image(control_image_input)
control_image_input_t = control_image_input_t.to(get_device())
if control_input.image_raw is None:
control_prep_function = CONTROL_MODES[control_input.mode]
if control_input.mode == "inpaint":
control_image_t = control_prep_function( # type: ignore
control_image_input_t, init_image_t
)
else:
control_image_t = control_prep_function(control_image_input_t) # type: ignore
else:
control_image_t = (control_image_input_t + 1) / 2
control_image_disp = control_image_t * 2 - 1
result_images[f"control-{control_input.mode}"] = control_image_disp
log_img(control_image_disp, "control_image")
if len(control_image_t.shape) == 3:
raise RuntimeError("Control image must be 4D")
if control_image_t.shape[1] != 3:
raise RuntimeError("Control image must have 3 channels")
if (
control_input.mode != "inpaint"
and control_image_t.min() < 0
or control_image_t.max() > 1
):
msg = f"Control image must be in [0, 1] but we received {control_image_t.min()} and {control_image_t.max()}"
raise RuntimeError(msg)
if control_image_t.max() == control_image_t.min():
msg = f"No control signal found in control image {control_input.mode}."
raise RuntimeError(msg)
c_cat.append(control_image_t)
control_strengths.append(control_input.strength)
elif hasattr(model, "masked_image_key"):
# inpainting model
assert mask_image_orig is not None
assert mask_latent is not None
mask_t = pillow_img_to_torch_image(ImageOps.invert(mask_image_orig)).to(
get_device()
)
inverted_mask = 1 - mask_latent
masked_image_t = init_image_t * (mask_t < 0.5)
log_img(masked_image_t, "masked_image")
inverted_mask_latent = torch.nn.functional.interpolate(
inverted_mask, size=shape[-2:]
)
c_cat.append(inverted_mask_latent)
masked_image_latent = model.get_first_stage_encoding(
model.encode_first_stage(masked_image_t)
)
c_cat.append(masked_image_latent)
elif model.cond_stage_key == "edit":
# pix2pix model
c_cat = [model.encode_first_stage(init_image_t)]
assert init_latent is not None
c_cat_neutral = [torch.zeros_like(init_latent)]
denoiser_cls = CFGEditingDenoiser
if c_cat:
c_cat = [torch.cat([c], dim=1) for c in c_cat]
if c_cat_neutral is None:
c_cat_neutral = c_cat
positive_conditioning_d: dict[str, Any] = {
"c_concat": c_cat,
"c_crossattn": [positive_conditioning],
}
neutral_conditioning_d: dict[str, Any] = {
"c_concat": c_cat_neutral,
"c_crossattn": [neutral_conditioning],
}
del neutral_conditioning
del positive_conditioning
if control_strengths and is_controlnet_model:
positive_conditioning_d["control_strengths"] = torch.Tensor(
control_strengths
)
neutral_conditioning_d["control_strengths"] = torch.Tensor(
control_strengths
)
if (
prompt.allow_compose_phase
and not is_controlnet_model
and model.cond_stage_key != "edit"
):
default_size = get_model_default_image_size(
prompt.model_weights.architecture
)
if prompt.init_image:
comp_image = _generate_composition_image(
prompt=prompt,
target_height=init_image.height,
target_width=init_image.width,
cutoff=default_size,
)
else:
comp_image = _generate_composition_image(
prompt=prompt,
target_height=prompt.height,
target_width=prompt.width,
cutoff=default_size,
)
if comp_image is not None:
result_images["composition"] = comp_image
# noise = noise[:, :, : comp_image.height, : comp_image.shape[3]]
t_enc = int(prompt.steps * 0.65)
log_img(comp_image, "comp_image")
comp_image_t = pillow_img_to_torch_image(comp_image)
comp_image_t = comp_image_t.to(get_device())
init_latent = model.get_first_stage_encoding(
model.encode_first_stage(comp_image_t)
)
with lc.timing("sampling"):
samples = solver.sample(
num_steps=prompt.steps,
positive_conditioning=positive_conditioning_d,
neutral_conditioning=neutral_conditioning_d,
guidance_scale=prompt.prompt_strength,
t_start=t_enc,
mask=mask_latent,
orig_latent=init_latent,
shape=shape,
batch_size=1,
denoiser_cls=denoiser_cls,
noise=noise,
)
if return_latent:
return samples
with lc.timing("decoding"):
gen_imgs_t = model.decode_first_stage(samples)
gen_img = torch_img_to_pillow_img(gen_imgs_t)
if mask_image_orig and init_image:
mask_final = mask_image_orig.copy()
log_img(mask_final, "reconstituting mask")
mask_final = ImageOps.invert(mask_final)
gen_img = Image.composite(gen_img, init_image, mask_final)
gen_img = combine_image(
original_img=init_image,
generated_img=gen_img,
mask_img=mask_image_orig,
)
log_img(gen_img, "reconstituted image")
upscaled_img = None
rebuilt_orig_img = None
if add_caption:
caption = generate_caption(gen_img)
logger.info(f"Generated caption: {caption}")
with lc.timing("safety-filter"):
safety_score = create_safety_score(
gen_img,
safety_mode=IMAGINAIRY_SAFETY_MODE,
)
if safety_score.is_filtered:
progress_latents.clear()
if not safety_score.is_filtered:
if prompt.fix_faces:
logger.info("Fixing 😊 's in 🖼 using CodeFormer...")
with lc.timing("face enhancement"):
gen_img = enhance_faces(gen_img, fidelity=prompt.fix_faces_fidelity)
if prompt.upscale:
logger.info("Upscaling 🖼 using real-ESRGAN...")
with lc.timing("upscaling"):
upscaled_img = upscale_image(gen_img)
# put the newly generated patch back into the original, full-size image
if prompt.mask_modify_original and mask_image_orig and starting_image:
img_to_add_back_to_original = upscaled_img if upscaled_img else gen_img
rebuilt_orig_img = combine_image(
original_img=starting_image,
generated_img=img_to_add_back_to_original,
mask_img=mask_image_orig,
)
if prompt.caption_text:
caption_text = prompt.caption_text.format(prompt=prompt.prompt_text)
add_caption_to_image(gen_img, caption_text)
result_images["upscaled"] = upscaled_img
result_images["modified_original"] = rebuilt_orig_img
result_images["mask_binary"] = mask_image_orig
result_images["mask_grayscale"] = mask_grayscale
result = ImagineResult(
img=gen_img,
prompt=prompt,
is_nsfw=safety_score.is_nsfw,
safety_score=safety_score,
result_images=result_images,
performance_stats=lc.get_performance_stats(),
progress_latents=progress_latents.copy(),
)
# _most_recent_result = result
logger.info(f"Image Generated. Timings: {result.timings_str()}")
return result
def _prompts_to_embeddings(prompts, model):
total_weight = sum(wp.weight for wp in prompts)
conditioning = sum(
model.get_learned_conditioning(wp.text) * (wp.weight / total_weight)
for wp in prompts
)
return conditioning
def _generate_composition_image(
prompt,
target_height,
target_width,
cutoff: tuple[int, int] = (512, 512),
dtype=None,
):
from PIL import Image
from imaginairy.utils import default, get_default_dtype
cutoff = normalize_image_size(cutoff)
if prompt.width <= cutoff[0] and prompt.height <= cutoff[1]:
return None, None
dtype = default(dtype, get_default_dtype)
shrink_scale = calc_scale_to_fit_within(
height=prompt.height,
width=prompt.width,
max_size=cutoff,
)
composition_prompt = prompt.full_copy(
deep=True,
update={
"size": (
int(prompt.width * shrink_scale),
int(prompt.height * shrink_scale),
),
"steps": None,
"upscale": False,
"fix_faces": False,
"mask_modify_original": False,
"allow_compose_phase": False,
},
)
result = _generate_single_image(composition_prompt, dtype=dtype)
img = result.images["generated"]
while img.width < target_width:
from imaginairy.enhancers.upscale_realesrgan import upscale_image
img = upscale_image(img)
# samples = generate_single_image(composition_prompt, return_latent=True)
# while samples.shape[-1] * 8 < target_width:
# samples = upscale_latent(samples)
#
# img = model_latent_to_pillow_img(samples)
img = img.resize(
(target_width, target_height),
resample=Image.Resampling.LANCZOS,
)
return img, result.images["generated"]