imaginAIry/tests/test_enhancers.py
Bryce 6a80759016 feature: improved safety filter
- provides more informative logs
- provides a detailed safety score object
- adds non-bypassable filter for extreme content
2022-10-10 03:32:19 -05:00

171 lines
4.8 KiB
Python

import hashlib
import pytest
from PIL import Image
from pytorch_lightning import seed_everything
from imaginairy import ImaginePrompt, imagine
from imaginairy.enhancers.bool_masker import MASK_PROMPT
from imaginairy.enhancers.clip_masking import get_img_mask
from imaginairy.enhancers.describe_image_blip import generate_caption
from imaginairy.enhancers.describe_image_clip import find_img_text_similarity
from imaginairy.enhancers.face_restoration_codeformer import enhance_faces
from imaginairy.utils import get_device
from tests import TESTS_FOLDER
@pytest.mark.skipif(
get_device() == "cpu", reason="TypeError: Got unsupported ScalarType BFloat16"
)
def test_fix_faces():
img = Image.open(f"{TESTS_FOLDER}/data/distorted_face.png")
seed_everything(1)
img = enhance_faces(img)
img.save(f"{TESTS_FOLDER}/test_output/fixed_face.png")
if "mps" in get_device():
assert img_hash(img) == "a75991307eda675a26eeb7073f828e93"
else:
# probably different based on whether first run or not. looks the same either way
assert img_hash(img) in [
"c840cf3bfe5a7760734f425a3f8941cf",
"e56c1205bbc8f251be05773f2ba7fa24",
]
def img_hash(img):
return hashlib.md5(img.tobytes()).hexdigest()
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_clip_masking():
img = Image.open(f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring_large.jpg")
for mask_modifier in [
"*0.5",
"*1",
"*6",
]:
pred_bin, pred_grayscale = get_img_mask(
img,
f"face AND NOT (bandana OR hair OR blue fabric){{{mask_modifier}}}",
threshold=0.5,
)
pred_grayscale.save(
f"{TESTS_FOLDER}/test_output/earring_mask_{mask_modifier}_g.png"
)
pred_bin.save(
f"{TESTS_FOLDER}/test_output/earring_mask_{mask_modifier}_bin.png"
)
prompt = ImaginePrompt(
"a female firefighter in front of a burning building",
init_image=img,
init_image_strength=0.95,
# lower steps for faster tests
steps=40,
mask_prompt="(head OR face){*5}",
mask_mode="replace",
upscale=False,
fix_faces=True,
)
result = next(imagine(prompt))
result.save(
f"{TESTS_FOLDER}/test_output/earring_mask_photo.png",
image_type="modified_original",
)
boolean_mask_test_cases = [
(
"fruit bowl",
"'fruit bowl'",
),
(
"((((fruit bowl))))",
"'fruit bowl'",
),
(
"fruit OR bowl",
"('fruit' OR 'bowl')",
),
(
"fruit|bowl",
"('fruit' OR 'bowl')",
),
(
"fruit | bowl",
"('fruit' OR 'bowl')",
),
(
"fruit OR bowl OR pear",
"('fruit' OR 'bowl' OR 'pear')",
),
(
"fruit AND bowl",
"('fruit' AND 'bowl')",
),
(
"fruit & bowl",
"('fruit' AND 'bowl')",
),
(
"fruit AND NOT green",
"('fruit' AND NOT 'green')",
),
(
"fruit bowl{+0.5}",
"'fruit bowl'+0.5",
),
(
"fruit bowl{+0.5} OR fruit",
"('fruit bowl'+0.5 OR 'fruit')",
),
(
"NOT pizza",
"NOT 'pizza'",
),
(
"car AND (wheels OR trunk OR engine OR windows) AND NOT (truck OR headlights{*10})",
"('car' AND ('wheels' OR 'trunk' OR 'engine' OR 'windows') AND NOT ('truck' OR 'headlights'*10))",
),
(
"car AND (wheels OR trunk OR engine OR windows OR headlights) AND NOT (truck OR headlights){*10}",
"('car' AND ('wheels' OR 'trunk' OR 'engine' OR 'windows' OR 'headlights') AND NOT ('truck' OR 'headlights')*10)",
),
]
@pytest.mark.parametrize("mask_text,expected", boolean_mask_test_cases)
def test_clip_mask_parser(mask_text, expected):
parsed = MASK_PROMPT.parseString(mask_text)[0][0]
assert str(parsed) == expected
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_describe_picture():
img = Image.open(f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring.jpg")
caption = generate_caption(img)
assert (
caption
== "a painting of a girl with a pearl earring wearing a yellow dress and a pearl earring in her ear and a black background"
)
def test_clip_text_comparison():
img = Image.open(f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring.jpg")
phrases = [
"Johannes Vermeer painting",
"a painting of a girl with a pearl earring",
"a bulldozer",
"photo",
]
probs = find_img_text_similarity(img, phrases)
assert probs[:2] == [
(
"a painting of a girl with a pearl earring",
pytest.approx(0.2857227921485901, abs=0.01),
),
("Johannes Vermeer painting", pytest.approx(0.25186583399772644, abs=0.01)),
]