mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
4705d182d5
- add wip functionality for negative masks - ci: add code linter that removes unused imports - add instructions to install rust on osx
307 lines
9.7 KiB
Python
307 lines
9.7 KiB
Python
"""
|
|
* Copyright (c) 2022, salesforce.com, inc.
|
|
* All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
* By Junnan Li
|
|
"""
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
import os
|
|
from urllib.parse import urlparse
|
|
|
|
import torch
|
|
from timm.models.hub import download_cached_file
|
|
from torch import nn
|
|
from transformers import BertTokenizer
|
|
|
|
from imaginairy.vendored.blip.med import BertConfig, BertLMHeadModel, BertModel
|
|
from imaginairy.vendored.blip.vit import VisionTransformer, interpolate_pos_embed
|
|
|
|
|
|
class BLIP_Base(nn.Module):
|
|
def __init__(
|
|
self,
|
|
med_config="configs/med_config.json",
|
|
image_size=224,
|
|
vit="base",
|
|
vit_grad_ckpt=False,
|
|
vit_ckpt_layer=0,
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(
|
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer
|
|
)
|
|
self.tokenizer = init_tokenizer()
|
|
med_config = BertConfig.from_json_file(med_config)
|
|
med_config.encoder_width = vision_width
|
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
|
|
|
def forward(self, image, caption, mode):
|
|
|
|
assert mode in [
|
|
"image",
|
|
"text",
|
|
"multimodal",
|
|
], "mode parameter must be image, text, or multimodal"
|
|
text = self.tokenizer(caption, return_tensors="pt").to(image.device)
|
|
|
|
if mode == "image":
|
|
# return image features
|
|
image_embeds = self.visual_encoder(image)
|
|
return image_embeds
|
|
|
|
elif mode == "text":
|
|
# return text features
|
|
text_output = self.text_encoder(
|
|
text.input_ids,
|
|
attention_mask=text.attention_mask,
|
|
return_dict=True,
|
|
mode="text",
|
|
)
|
|
return text_output.last_hidden_state
|
|
|
|
elif mode == "multimodal":
|
|
# return multimodel features
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
|
|
text.input_ids[:, 0] = self.tokenizer.enc_token_id
|
|
output = self.text_encoder(
|
|
text.input_ids,
|
|
attention_mask=text.attention_mask,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
return output.last_hidden_state
|
|
|
|
|
|
class BLIP_Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
med_config="configs/med_config.json",
|
|
image_size=384,
|
|
vit="base",
|
|
vit_grad_ckpt=False,
|
|
vit_ckpt_layer=0,
|
|
prompt="a picture of ",
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(
|
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer
|
|
)
|
|
self.tokenizer = init_tokenizer()
|
|
med_config = BertConfig.from_json_file(med_config)
|
|
med_config.encoder_width = vision_width
|
|
self.text_decoder = BertLMHeadModel(config=med_config)
|
|
|
|
self.prompt = prompt
|
|
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
|
|
|
|
def forward(self, image, caption):
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
|
|
text = self.tokenizer(
|
|
caption,
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=40,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
|
|
text.input_ids[:, 0] = self.tokenizer.bos_token_id
|
|
|
|
decoder_targets = text.input_ids.masked_fill(
|
|
text.input_ids == self.tokenizer.pad_token_id, -100
|
|
)
|
|
decoder_targets[:, : self.prompt_length] = -100
|
|
|
|
decoder_output = self.text_decoder(
|
|
text.input_ids,
|
|
attention_mask=text.attention_mask,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
labels=decoder_targets,
|
|
return_dict=True,
|
|
)
|
|
loss_lm = decoder_output.loss
|
|
|
|
return loss_lm
|
|
|
|
def generate(
|
|
self,
|
|
image,
|
|
sample=False,
|
|
num_beams=3,
|
|
max_length=30,
|
|
min_length=10,
|
|
top_p=0.9,
|
|
repetition_penalty=1.0,
|
|
):
|
|
image_embeds = self.visual_encoder(image)
|
|
|
|
if not sample:
|
|
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0)
|
|
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
model_kwargs = {
|
|
"encoder_hidden_states": image_embeds,
|
|
"encoder_attention_mask": image_atts,
|
|
}
|
|
|
|
prompt = [self.prompt] * image.size(0)
|
|
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
|
image.device
|
|
)
|
|
input_ids[:, 0] = self.tokenizer.bos_token_id
|
|
input_ids = input_ids[:, :-1]
|
|
|
|
if sample:
|
|
# nucleus sampling
|
|
outputs = self.text_decoder.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
do_sample=True,
|
|
top_p=top_p,
|
|
num_return_sequences=1,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
repetition_penalty=1.1,
|
|
**model_kwargs
|
|
)
|
|
else:
|
|
# beam search
|
|
outputs = self.text_decoder.generate(
|
|
input_ids=input_ids,
|
|
max_length=max_length,
|
|
min_length=min_length,
|
|
num_beams=num_beams,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
repetition_penalty=repetition_penalty,
|
|
**model_kwargs
|
|
)
|
|
|
|
captions = []
|
|
for output in outputs:
|
|
caption = self.tokenizer.decode(output, skip_special_tokens=True)
|
|
captions.append(caption[len(self.prompt) :])
|
|
return captions
|
|
|
|
|
|
def blip_decoder(pretrained="", **kwargs):
|
|
model = BLIP_Decoder(**kwargs)
|
|
if pretrained:
|
|
model, msg = load_checkpoint(model, pretrained)
|
|
assert len(msg.missing_keys) == 0
|
|
return model
|
|
|
|
|
|
def blip_feature_extractor(pretrained="", **kwargs):
|
|
model = BLIP_Base(**kwargs)
|
|
if pretrained:
|
|
model, msg = load_checkpoint(model, pretrained)
|
|
assert len(msg.missing_keys) == 0
|
|
return model
|
|
|
|
|
|
def init_tokenizer():
|
|
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
|
|
tokenizer.add_special_tokens({"additional_special_tokens": ["[ENC]"]})
|
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
|
|
return tokenizer
|
|
|
|
|
|
def create_vit(
|
|
vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0
|
|
):
|
|
|
|
assert vit in ["base", "large"], "vit parameter must be base or large"
|
|
if vit == "base":
|
|
vision_width = 768
|
|
visual_encoder = VisionTransformer(
|
|
img_size=image_size,
|
|
patch_size=16,
|
|
embed_dim=vision_width,
|
|
depth=12,
|
|
num_heads=12,
|
|
use_grad_checkpointing=use_grad_checkpointing,
|
|
ckpt_layer=ckpt_layer,
|
|
drop_path_rate=0 or drop_path_rate,
|
|
)
|
|
elif vit == "large":
|
|
vision_width = 1024
|
|
visual_encoder = VisionTransformer(
|
|
img_size=image_size,
|
|
patch_size=16,
|
|
embed_dim=vision_width,
|
|
depth=24,
|
|
num_heads=16,
|
|
use_grad_checkpointing=use_grad_checkpointing,
|
|
ckpt_layer=ckpt_layer,
|
|
drop_path_rate=0.1 or drop_path_rate,
|
|
)
|
|
return visual_encoder, vision_width
|
|
|
|
|
|
def is_url(url_or_filename):
|
|
parsed = urlparse(url_or_filename)
|
|
return parsed.scheme in ("http", "https")
|
|
|
|
|
|
def load_checkpoint(model, url_or_filename):
|
|
if is_url(url_or_filename):
|
|
cached_file = download_cached_file(
|
|
url_or_filename, check_hash=False, progress=True
|
|
)
|
|
checkpoint = torch.load(cached_file, map_location="cpu")
|
|
elif os.path.isfile(url_or_filename):
|
|
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
|
else:
|
|
raise RuntimeError("checkpoint url or path is invalid")
|
|
|
|
state_dict = checkpoint["model"]
|
|
|
|
state_dict["visual_encoder.pos_embed"] = interpolate_pos_embed(
|
|
state_dict["visual_encoder.pos_embed"], model.visual_encoder
|
|
)
|
|
if "visual_encoder_m.pos_embed" in model.state_dict().keys():
|
|
state_dict["visual_encoder_m.pos_embed"] = interpolate_pos_embed(
|
|
state_dict["visual_encoder_m.pos_embed"], model.visual_encoder_m
|
|
)
|
|
for key in model.state_dict().keys():
|
|
if key in state_dict.keys():
|
|
if state_dict[key].shape != model.state_dict()[key].shape:
|
|
del state_dict[key]
|
|
|
|
msg = model.load_state_dict(state_dict, strict=False)
|
|
# print("load checkpoint from %s" % url_or_filename)
|
|
return model, msg
|