imaginAIry/tests/test_api.py
jaydrennan 3f3e080d39 feature: adds ability to use qrcode
feature: adds controlnet qrcode image generation.
feature: adds control net for qrcode image generation.
2023-12-14 21:12:25 -08:00

374 lines
12 KiB
Python

import os.path
import pytest
from imaginairy.api import imagine, imagine_image_files
from imaginairy.img_processors.control_modes import CONTROL_MODES
from imaginairy.img_utils import pillow_fit_image_within
from imaginairy.schema import ControlInput, ImaginePrompt, LazyLoadingImage, MaskMode
from imaginairy.utils import get_device
from . import TESTS_FOLDER
from .utils import assert_image_similar_to_expectation
def test_imagine(solver_type, filename_base_for_outputs):
prompt_text = "a scenic old-growth forest with diffuse light poking through the canopy. high resolution nature photography"
prompt = ImaginePrompt(
prompt_text, size=512, steps=20, seed=1, solver_type=solver_type
)
result = next(imagine(prompt))
threshold_lookup = {"k_dpm_2_a": 26000}
threshold = threshold_lookup.get(solver_type, 10000)
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(
result.img, img_path=img_path, threshold=threshold
)
compare_prompts = [
"a photo of a bowl of fruit",
"a headshot photo of a happy couple smiling at the camera",
"a painting of a beautiful cloudy sunset at the beach",
"a photo of a dog",
"a photo of a handshake",
"a photo of an astronaut riding a horse on the moon. the earth visible in the background",
]
@pytest.mark.skipif(get_device() != "cuda", reason="Too slow to run on CPU or MPS")
@pytest.mark.parametrize("model_version", ["SD-1.5"])
def test_model_versions(filename_base_for_orig_outputs, model_version):
"""Test that we can switch between model versions."""
prompts = []
for prompt_text in compare_prompts:
prompts.append(
ImaginePrompt(
prompt_text,
seed=1,
model_weights=model_version,
)
)
threshold = 35000
results = list(imagine(prompts))
for i, result in enumerate(results):
img_path = f"{filename_base_for_orig_outputs}_{result.prompt.prompt_text}_{result.prompt.model_weights.aliases[0]}.png"
result.img.save(img_path)
for i, result in enumerate(results):
img_path = f"{filename_base_for_orig_outputs}_{result.prompt.prompt_text}_{result.prompt.model_weights.aliases[0]}.png"
assert_image_similar_to_expectation(
result.img, img_path=img_path, threshold=threshold
)
def test_img2img_beach_to_sunset(
solver_type, filename_base_for_outputs, filename_base_for_orig_outputs
):
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/beach_at_sainte_adresse.jpg")
prompt = ImaginePrompt(
"a painting of beautiful cloudy sunset at the beach",
init_image=img,
init_image_strength=0.5,
prompt_strength=15,
mask_prompt="(sky|clouds) AND !(buildings|trees)",
mask_mode="replace",
size=512,
steps=40 * 2,
seed=1,
solver_type=solver_type,
)
result = next(imagine(prompt))
pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}__orig.jpg")
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=2900)
def test_img_to_img_from_url_cats(
solver_type,
filename_base_for_outputs,
mocked_responses,
filename_base_for_orig_outputs,
default_model_loaded,
):
with open(
os.path.join(TESTS_FOLDER, "data", "val2017-000000039769-cococats.jpg"), "rb"
) as f:
img_data = f.read()
mocked_responses.get(
"http://images.cocodataset.org/val2017/000000039769.jpg",
body=img_data,
status=200,
content_type="image/jpeg",
)
img = LazyLoadingImage(url="http://images.cocodataset.org/val2017/000000039769.jpg")
prompt = ImaginePrompt(
"dogs lying on a hot pink couch",
init_image=img,
init_image_strength=0.5,
size=512,
steps=50,
seed=1,
solver_type=solver_type,
)
result = next(imagine(prompt))
img = pillow_fit_image_within(img)
img.save(f"{filename_base_for_orig_outputs}__orig.jpg")
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=17000)
def test_img2img_low_noise(
filename_base_for_outputs,
solver_type,
):
fruit_path = os.path.join(TESTS_FOLDER, "data", "bowl_of_fruit.jpg")
img = LazyLoadingImage(filepath=fruit_path)
prompt = ImaginePrompt(
"a white bowl filled with gold coins",
prompt_strength=12,
init_image=img,
init_image_strength=0.5,
mask_prompt="(fruit{*2} OR stem{*10} OR fruit stem{*3})",
mask_mode="replace",
# steps=40,
seed=1,
solver_type=solver_type,
)
result = next(imagine(prompt))
threshold_lookup = {
"dpmpp": 26000,
"k_dpm_2_a": 26000,
"k_euler_a": 18000,
"k_dpm_adaptive": 13000,
}
threshold = threshold_lookup.get(solver_type, 14000)
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(
result.img, img_path=img_path, threshold=threshold
)
@pytest.mark.parametrize("init_strength", [0, 0.05, 0.2, 1])
def test_img_to_img_fruit_2_gold(
filename_base_for_outputs,
solver_type,
init_strength,
filename_base_for_orig_outputs,
):
img = LazyLoadingImage(
filepath=os.path.join(TESTS_FOLDER, "data", "bowl_of_fruit.jpg")
)
target_steps = 25
needed_steps = 25 if init_strength >= 1 else int(target_steps / (1 - init_strength))
prompt = ImaginePrompt(
"a white bowl filled with gold coins",
prompt_strength=12,
init_image=img,
init_image_strength=init_strength,
mask_prompt="(fruit{*2} OR stem{*10} OR fruit stem{*3})",
mask_mode="replace",
steps=needed_steps,
seed=1,
solver_type=solver_type,
)
result = next(imagine(prompt))
threshold_lookup = {
"k_dpm_2_a": 32000,
"k_euler_a": 18000,
"k_dpm_adaptive": 13000,
"k_dpmpp_2s": 16000,
}
threshold = threshold_lookup.get(solver_type, 16000)
pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}__orig.jpg")
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(
result.img, img_path=img_path, threshold=threshold
)
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_img_to_img_fruit_2_gold_repeat():
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bowl_of_fruit.jpg")
run_count = 1
kwargs = {
"prompt": "a white bowl filled with gold coins. sharp focus",
"prompt_strength": 12,
"init_image": img,
"init_image_strength": 0.2,
"mask_prompt": "(fruit OR stem{*5} OR fruit stem)",
"mask_mode": "replace",
"steps": 20,
"seed": 946188797,
"fix_faces": True,
"upscale": True,
}
prompts = [
ImaginePrompt(**kwargs),
ImaginePrompt(**kwargs),
ImaginePrompt(**kwargs),
]
for result in imagine(prompts, debug_img_callback=None):
result.img.save(
f"{TESTS_FOLDER}/test_output/img2img_fruit_2_gold_{result.prompt.solver_type}_{get_device()}_run-{run_count:02}.jpg"
)
run_count += 1
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_img_to_file():
prompt = ImaginePrompt(
"an old growth forest, diffuse light poking through the canopy. high-resolution, nature photography, nat geo photo",
size=(512 + 64, 512 - 64),
steps=2,
seed=2,
upscale=True,
)
out_folder = f"{TESTS_FOLDER}/test_output"
imagine_image_files(prompt, outdir=out_folder)
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_inpainting_bench(filename_base_for_outputs, filename_base_for_orig_outputs):
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2.png")
prompt = ImaginePrompt(
"a wise old man",
init_image=img,
init_image_strength=0.4,
mask_image=LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2_mask.png"),
size=512,
steps=40,
seed=1,
)
result = next(imagine(prompt))
pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}_orig.jpg")
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=2800)
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_cliptext_inpainting_pearl_doctor(
filename_base_for_outputs, filename_base_for_orig_outputs
):
img = LazyLoadingImage(
filepath=f"{TESTS_FOLDER}/data/girl_with_a_pearl_earring.jpg"
)
prompt = ImaginePrompt(
"a female doctor in the hospital",
prompt_strength=12,
init_image=img,
init_image_strength=0.2,
mask_prompt="face AND NOT (bandana OR hair OR blue fabric){*5}",
mask_mode=MaskMode.KEEP,
size=512,
steps=40,
seed=181509347,
)
result = next(imagine(prompt))
pillow_fit_image_within(img).save(f"{filename_base_for_orig_outputs}_orig.jpg")
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=32000)
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_tile_mode(filename_base_for_outputs):
prompt_text = "gold coins"
prompt = ImaginePrompt(
prompt_text,
size=400,
steps=15,
seed=1,
tile_mode="xy",
)
result = next(imagine(prompt))
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=26000)
control_modes = list(CONTROL_MODES.keys())
@pytest.mark.parametrize("control_mode", control_modes)
@pytest.mark.skipif(get_device() == "cpu", reason="Too slow to run on CPU")
def test_controlnet(filename_base_for_outputs, control_mode):
prompt_text = "a photo of a woman sitting on a bench"
img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2.png")
control_input = ControlInput(
mode=control_mode,
image=img,
)
seed = 0
if control_mode == "inpaint":
prompt_text = "a wise old man"
seed = 1
mask_image = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/bench2_mask.png")
control_input = ControlInput(
mode=control_mode,
image=mask_image,
)
elif control_mode == "qrcode":
prompt_text = "a fruit salad"
swirl_img = LazyLoadingImage(filepath=f"{TESTS_FOLDER}/data/swirl.jpeg")
control_input = ControlInput(
mode=control_mode,
image=swirl_img,
)
prompt = ImaginePrompt(
prompt_text,
size=512,
steps=45,
seed=seed,
init_image=img,
init_image_strength=0,
control_inputs=[control_input],
fix_faces=True,
solver_type="ddim",
)
prompt.steps = 1
prompt.size = 256
result = next(imagine(prompt))
prompt.steps = 15
prompt.size = 512
result = next(imagine(prompt))
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=25000)
@pytest.mark.skipif(
get_device() in {"cpu", "mps"},
reason="Too slow to run on CPU. Too much memory for MPS",
)
def test_large_image(filename_base_for_outputs):
prompt_text = "a stormy ocean. oil painting"
prompt = ImaginePrompt(
prompt_text,
size="1080p",
steps=30,
seed=0,
)
result = next(imagine(prompt))
img_path = f"{filename_base_for_outputs}.png"
assert_image_similar_to_expectation(result.img, img_path=img_path, threshold=35000)