imaginAIry/imaginairy/modules/sgm/encoders/modules.py
Bryce 316114e660 docs: add docstrings
Wrote an openai script and custom prompt to generate them.
2023-12-15 14:32:01 -08:00

1072 lines
35 KiB
Python

"""Classes for image and text encoding"""
import math
from contextlib import nullcontext
from functools import partial
from typing import Dict, List, Optional, Tuple, Union
import kornia
import numpy as np
import open_clip
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import ListConfig
from torch.utils.checkpoint import checkpoint
from transformers import (
ByT5Tokenizer,
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer,
)
from imaginairy.modules.sgm.autoencoding.regularizers import DiagonalGaussianRegularizer
from imaginairy.modules.sgm.diffusionmodules.model import Encoder
from imaginairy.modules.sgm.diffusionmodules.openaimodel import Timestep
from imaginairy.modules.sgm.diffusionmodules.util import (
extract_into_tensor,
make_beta_schedule,
)
from imaginairy.modules.sgm.distributions.distributions import (
DiagonalGaussianDistribution,
)
from imaginairy.utils import (
default,
disabled_train,
expand_dims_like,
get_device,
instantiate_from_config,
platform_appropriate_autocast,
)
from imaginairy.vendored.k_diffusion.utils import append_dims
# from ..util import (append_dims, autocast, count_params, default,
# disabled_train, expand_dims_like, instantiate_from_config)
class AbstractEmbModel(nn.Module):
def __init__(self):
super().__init__()
self._is_trainable = None
self._ucg_rate = None
self._input_key = None
@property
def is_trainable(self) -> bool:
return self._is_trainable
@property
def ucg_rate(self) -> Union[float, torch.Tensor]:
return self._ucg_rate
@property
def input_key(self) -> str:
return self._input_key
@is_trainable.setter
def is_trainable(self, value: bool):
self._is_trainable = value
@ucg_rate.setter
def ucg_rate(self, value: Union[float, torch.Tensor]):
self._ucg_rate = value
@input_key.setter
def input_key(self, value: str):
self._input_key = value
@is_trainable.deleter
def is_trainable(self):
del self._is_trainable
@ucg_rate.deleter
def ucg_rate(self):
del self._ucg_rate
@input_key.deleter
def input_key(self):
del self._input_key
class GeneralConditioner(nn.Module):
OUTPUT_DIM2KEYS = {2: "vector", 3: "crossattn", 4: "concat", 5: "concat"}
KEY2CATDIM = {"vector": 1, "crossattn": 2, "concat": 1}
def __init__(self, emb_models: Union[List, ListConfig]):
super().__init__()
embedders = []
for n, embconfig in enumerate(emb_models):
embedder = instantiate_from_config(embconfig)
assert isinstance(
embedder, AbstractEmbModel
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
embedder.is_trainable = embconfig.get("is_trainable", False)
embedder.ucg_rate = embconfig.get("ucg_rate", 0.0)
if not embedder.is_trainable:
embedder.train = disabled_train
for param in embedder.parameters():
param.requires_grad = False
embedder.eval()
# print(
# f"Initialized embedder #{n}: {embedder.__class__.__name__} "
# f"with {count_params(embedder, False)} params. Trainable: {embedder.is_trainable}"
# )
if "input_key" in embconfig:
embedder.input_key = embconfig["input_key"]
elif "input_keys" in embconfig:
embedder.input_keys = embconfig["input_keys"]
else:
msg = f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}"
raise KeyError(msg)
embedder.legacy_ucg_val = embconfig.get("legacy_ucg_value", None)
if embedder.legacy_ucg_val is not None:
embedder.ucg_prng = np.random.RandomState()
embedders.append(embedder)
self.embedders = nn.ModuleList(embedders)
def possibly_get_ucg_val(self, embedder: AbstractEmbModel, batch: Dict) -> Dict:
assert embedder.legacy_ucg_val is not None
p = embedder.ucg_rate
val = embedder.legacy_ucg_val
for i in range(len(batch[embedder.input_key])):
if embedder.ucg_prng.choice(2, p=[1 - p, p]):
batch[embedder.input_key][i] = val
return batch
def forward(
self, batch: Dict, force_zero_embeddings: Optional[List] = None
) -> Dict:
output = {}
if force_zero_embeddings is None:
force_zero_embeddings = []
for embedder in self.embedders:
embedding_context = nullcontext if embedder.is_trainable else torch.no_grad
with embedding_context():
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
if embedder.legacy_ucg_val is not None:
batch = self.possibly_get_ucg_val(embedder, batch)
emb_out = embedder(batch[embedder.input_key])
elif hasattr(embedder, "input_keys"):
emb_out = embedder(*[batch[k] for k in embedder.input_keys])
assert isinstance(
emb_out, (torch.Tensor, list, tuple)
), f"encoder outputs must be tensors or a sequence, but got {type(emb_out)}"
if not isinstance(emb_out, (list, tuple)):
emb_out = [emb_out]
for emb in emb_out:
out_key = self.OUTPUT_DIM2KEYS[emb.dim()]
if embedder.ucg_rate > 0.0 and embedder.legacy_ucg_val is None:
emb = (
expand_dims_like(
torch.bernoulli(
(1.0 - embedder.ucg_rate)
* torch.ones(emb.shape[0], device=emb.device)
),
emb,
)
* emb
)
if (
hasattr(embedder, "input_key")
and embedder.input_key in force_zero_embeddings
):
emb = torch.zeros_like(emb)
if out_key in output:
output[out_key] = torch.cat(
(output[out_key], emb), self.KEY2CATDIM[out_key]
)
else:
output[out_key] = emb
return output
def get_unconditional_conditioning(
self,
batch_c: Dict,
batch_uc: Optional[Dict] = None,
force_uc_zero_embeddings: Optional[List[str]] = None,
force_cond_zero_embeddings: Optional[List[str]] = None,
):
if force_uc_zero_embeddings is None:
force_uc_zero_embeddings = []
ucg_rates = []
for embedder in self.embedders:
ucg_rates.append(embedder.ucg_rate)
embedder.ucg_rate = 0.0
c = self(batch_c, force_cond_zero_embeddings)
uc = self(batch_c if batch_uc is None else batch_uc, force_uc_zero_embeddings)
for embedder, rate in zip(self.embedders, ucg_rates):
embedder.ucg_rate = rate
return c, uc
class InceptionV3(nn.Module):
"""Wrapper around the https://github.com/mseitzer/pytorch-fid inception
port with an additional squeeze at the end"""
def __init__(self, normalize_input=False, **kwargs):
super().__init__()
from pytorch_fid import inception
kwargs["resize_input"] = True
self.model = inception.InceptionV3(normalize_input=normalize_input, **kwargs)
def forward(self, inp):
outp = self.model(inp)
if len(outp) == 1:
return outp[0].squeeze()
return outp
class IdentityEncoder(AbstractEmbModel):
def encode(self, x):
return x
def forward(self, x):
return x
class ClassEmbedder(AbstractEmbModel):
def __init__(self, embed_dim, n_classes=1000, add_sequence_dim=False):
super().__init__()
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.add_sequence_dim = add_sequence_dim
def forward(self, c):
c = self.embedding(c)
if self.add_sequence_dim:
c = c[:, None, :]
return c
def get_unconditional_conditioning(self, bs, device=None):
device = default(device, get_device)
uc_class = (
self.n_classes - 1
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc.long()}
return uc
class ClassEmbedderForMultiCond(ClassEmbedder):
def forward(self, batch, key=None, disable_dropout=False):
out = batch
key = default(key, self.key)
islist = isinstance(batch[key], list)
if islist:
batch[key] = batch[key][0]
c_out = super().forward(batch, key, disable_dropout)
out[key] = [c_out] if islist else c_out
return out
class FrozenT5Embedder(AbstractEmbModel):
"""Uses the T5 transformer encoder for text"""
def __init__(
self, version="google/t5-v1_1-xxl", device=None, max_length=77, freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
device = default(device, get_device)
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with platform_appropriate_autocast(enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenByT5Embedder(AbstractEmbModel):
"""
Uses the ByT5 transformer encoder for text. Is character-aware.
"""
def __init__(
self, version="google/byt5-base", device=None, max_length=77, freeze=True
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
device = default(device, get_device)
self.tokenizer = ByT5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
with platform_appropriate_autocast(enabled=False):
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEmbModel):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(
self,
version="openai/clip-vit-large-patch14",
device=None,
max_length=77,
freeze=True,
layer="last",
layer_idx=None,
always_return_pooled=False,
): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
device = default(device, get_device)
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
self.return_pooled = always_return_pooled
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
@platform_appropriate_autocast
def forward(self, text):
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(
input_ids=tokens, output_hidden_states=self.layer == "hidden"
)
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
if self.return_pooled:
return z, outputs.pooler_output
return z
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder2(AbstractEmbModel):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = ["pooled", "last", "penultimate"]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device=None,
max_length=77,
freeze=True,
layer="last",
always_return_pooled=False,
legacy=True,
):
super().__init__()
assert layer in self.LAYERS
device = default(device, get_device)
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device("cpu"),
pretrained=version,
)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
self.return_pooled = always_return_pooled
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
self.legacy = legacy
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@platform_appropriate_autocast
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
if not self.return_pooled and self.legacy:
return z
if self.return_pooled:
assert not self.legacy
return z[self.layer], z["pooled"]
return z[self.layer]
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
if self.legacy:
x = x[self.layer]
x = self.model.ln_final(x)
return x
else:
# x is a dict and will stay a dict
o = x["last"]
o = self.model.ln_final(o)
pooled = self.pool(o, text)
x["pooled"] = pooled
return x
def pool(self, x, text):
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = (
x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
@ self.model.text_projection
)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
outputs = {}
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - 1:
outputs["penultimate"] = x.permute(1, 0, 2) # LND -> NLD
if (
self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()
):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
outputs["last"] = x.permute(1, 0, 2) # LND -> NLD
return outputs
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder(AbstractEmbModel):
LAYERS = [
# "pooled",
"last",
"penultimate",
]
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device=None,
max_length=77,
freeze=True,
layer="last",
):
super().__init__()
device = default(device, get_device)
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(
arch, device=torch.device("cpu"), pretrained=version
)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if (
self.model.transformer.grad_checkpointing
and not torch.jit.is_scripting()
):
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
"""
Uses the OpenCLIP vision transformer encoder for images
"""
def __init__(
self,
arch="ViT-H-14",
version="laion2b_s32b_b79k",
device=None,
max_length=77,
freeze=True,
antialias=True,
ucg_rate=0.0,
unsqueeze_dim=False,
repeat_to_max_len=False,
num_image_crops=0,
output_tokens=False,
init_device=None,
):
device = default(device, get_device)
super().__init__()
model, _, _ = open_clip.create_model_and_transforms(
arch,
device=torch.device(default(init_device, "cpu")),
pretrained=version,
)
del model.transformer
self.model = model
self.max_crops = num_image_crops
self.pad_to_max_len = self.max_crops > 0
self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.antialias = antialias
self.register_buffer(
"mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
)
self.register_buffer(
"std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
)
self.ucg_rate = ucg_rate
self.unsqueeze_dim = unsqueeze_dim
self.stored_batch = None
self.model.visual.output_tokens = output_tokens
self.output_tokens = output_tokens
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(
x,
(224, 224),
interpolation="bicubic",
align_corners=True,
antialias=self.antialias,
)
x = (x + 1.0) / 2.0
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
@platform_appropriate_autocast()
def forward(self, image, no_dropout=False):
z = self.encode_with_vision_transformer(image)
tokens = None
if self.output_tokens:
z, tokens = z[0], z[1]
z = z.to(image.dtype)
if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
z = (
torch.bernoulli(
(1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
)[:, None]
* z
)
if tokens is not None:
tokens = (
expand_dims_like(
torch.bernoulli(
(1.0 - self.ucg_rate)
* torch.ones(tokens.shape[0], device=tokens.device)
),
tokens,
)
* tokens
)
if self.unsqueeze_dim:
z = z[:, None, :]
if self.output_tokens:
assert not self.repeat_to_max_len
assert not self.pad_to_max_len
return tokens, z
if self.repeat_to_max_len:
z_ = z[:, None, :] if z.dim() == 2 else z
return repeat(z_, "b 1 d -> b n d", n=self.max_length), z
elif self.pad_to_max_len:
assert z.dim() == 3
z_pad = torch.cat(
(
z,
torch.zeros(
z.shape[0],
self.max_length - z.shape[1],
z.shape[2],
device=z.device,
),
),
1,
)
return z_pad, z_pad[:, 0, ...]
return z
def encode_with_vision_transformer(self, img):
# if self.max_crops > 0:
# img = self.preprocess_by_cropping(img)
if img.dim() == 5:
assert self.max_crops == img.shape[1]
img = rearrange(img, "b n c h w -> (b n) c h w")
img = self.preprocess(img)
if not self.output_tokens:
assert not self.model.visual.output_tokens
x = self.model.visual(img)
tokens = None
else:
assert self.model.visual.output_tokens
x, tokens = self.model.visual(img)
if self.max_crops > 0:
x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
# drop out between 0 and all along the sequence axis
x = (
torch.bernoulli(
(1.0 - self.ucg_rate)
* torch.ones(x.shape[0], x.shape[1], 1, device=x.device)
)
* x
)
if tokens is not None:
tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops)
print(
f"You are running very experimental token-concat in {self.__class__.__name__}. "
f"Check what you are doing, and then remove this message."
)
if self.output_tokens:
return x, tokens
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEmbModel):
def __init__(
self,
clip_version="openai/clip-vit-large-patch14",
t5_version="google/t5-v1_1-xl",
device=None,
clip_max_length=77,
t5_max_length=77,
):
device = default(device, get_device)
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(
clip_version, device, max_length=clip_max_length
)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
# print(
# f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
# f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params."
# )
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
class SpatialRescaler(nn.Module):
def __init__(
self,
n_stages=1,
method="bilinear",
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False,
wrap_video=False,
kernel_size=1,
remap_output=False,
):
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in [
"nearest",
"linear",
"bilinear",
"trilinear",
"bicubic",
"area",
]
self.multiplier = multiplier
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
self.remap_output = out_channels is not None or remap_output
if self.remap_output:
print(
f"Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing."
)
self.channel_mapper = nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
bias=bias,
padding=kernel_size // 2,
)
self.wrap_video = wrap_video
def forward(self, x):
if self.wrap_video and x.ndim == 5:
B, C, T, H, W = x.shape
x = rearrange(x, "b c t h w -> b t c h w")
x = rearrange(x, "b t c h w -> (b t) c h w")
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.wrap_video:
x = rearrange(x, "(b t) c h w -> b t c h w", b=B, t=T, c=C)
x = rearrange(x, "b t c h w -> b c t h w")
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
class LowScaleEncoder(nn.Module):
def __init__(
self,
model_config,
linear_start,
linear_end,
timesteps=1000,
max_noise_level=250,
output_size=64,
scale_factor=1.0,
):
super().__init__()
self.max_noise_level = max_noise_level
self.model = instantiate_from_config(model_config)
self.augmentation_schedule = self.register_schedule(
timesteps=timesteps, linear_start=linear_start, linear_end=linear_end
)
self.out_size = output_size
self.scale_factor = scale_factor
def register_schedule(
self,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def forward(self, x):
z = self.model.encode(x)
if isinstance(z, DiagonalGaussianDistribution):
z = z.sample()
z = z * self.scale_factor
noise_level = torch.randint(
0, self.max_noise_level, (x.shape[0],), device=x.device
).long()
z = self.q_sample(z, noise_level)
if self.out_size is not None:
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest")
return z, noise_level
def decode(self, z):
z = z / self.scale_factor
return self.model.decode(z)
class ConcatTimestepEmbedderND(AbstractEmbModel):
"""embeds each dimension independently and concatenates them"""
def __init__(self, outdim):
super().__init__()
self.timestep = Timestep(outdim)
self.outdim = outdim
def forward(self, x):
if x.ndim == 1:
x = x[:, None]
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = rearrange(x, "b d -> (b d)")
emb = self.timestep(x)
emb = rearrange(emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
return emb
class GaussianEncoder(Encoder, AbstractEmbModel):
def __init__(
self, weight: float = 1.0, flatten_output: bool = True, *args, **kwargs
):
super().__init__(*args, **kwargs)
self.posterior = DiagonalGaussianRegularizer()
self.weight = weight
self.flatten_output = flatten_output
def forward(self, x) -> Tuple[Dict, torch.Tensor]:
z = super().forward(x)
z, log = self.posterior(z)
log["loss"] = log["kl_loss"]
log["weight"] = self.weight
if self.flatten_output:
z = rearrange(z, "b c h w -> b (h w ) c")
return log, z
class VideoPredictionEmbedderWithEncoder(AbstractEmbModel):
def __init__(
self,
n_cond_frames: int,
n_copies: int,
encoder_config: dict,
sigma_sampler_config: Optional[dict] = None,
sigma_cond_config: Optional[dict] = None,
is_ae: bool = False,
scale_factor: float = 1.0,
disable_encoder_autocast: bool = False,
en_and_decode_n_samples_a_time: Optional[int] = None,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.encoder = instantiate_from_config(encoder_config)
self.sigma_sampler = (
instantiate_from_config(sigma_sampler_config)
if sigma_sampler_config is not None
else None
)
self.sigma_cond = (
instantiate_from_config(sigma_cond_config)
if sigma_cond_config is not None
else None
)
self.is_ae = is_ae
self.scale_factor = scale_factor
self.disable_encoder_autocast = disable_encoder_autocast
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
def forward(
self, vid: torch.Tensor
) -> Union[
torch.Tensor,
Tuple[torch.Tensor, torch.Tensor],
Tuple[torch.Tensor, dict],
Tuple[Tuple[torch.Tensor, torch.Tensor], dict],
]:
if self.sigma_sampler is not None:
b = vid.shape[0] // self.n_cond_frames
sigmas = self.sigma_sampler(b).to(vid.device)
if self.sigma_cond is not None:
sigma_cond = self.sigma_cond(sigmas)
sigma_cond = repeat(sigma_cond, "b d -> (b t) d", t=self.n_copies)
sigmas = repeat(sigmas, "b -> (b t)", t=self.n_cond_frames)
noise = torch.randn_like(vid)
vid = vid + noise * append_dims(sigmas, vid.ndim)
with platform_appropriate_autocast(enabled=not self.disable_encoder_autocast):
n_samples = (
self.en_and_decode_n_samples_a_time
if self.en_and_decode_n_samples_a_time is not None
else vid.shape[0]
)
n_rounds = math.ceil(vid.shape[0] / n_samples)
all_out = []
for n in range(n_rounds):
if self.is_ae:
out = self.encoder.encode(vid[n * n_samples : (n + 1) * n_samples])
else:
out = self.encoder(vid[n * n_samples : (n + 1) * n_samples])
all_out.append(out)
vid = torch.cat(all_out, dim=0)
vid *= self.scale_factor
vid = rearrange(vid, "(b t) c h w -> b () (t c) h w", t=self.n_cond_frames)
vid = repeat(vid, "b 1 c h w -> (b t) c h w", t=self.n_copies)
return_val = (vid, sigma_cond) if self.sigma_cond is not None else vid
return return_val
class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel):
def __init__(
self,
open_clip_embedding_config: Dict,
n_cond_frames: int,
n_copies: int,
):
super().__init__()
self.n_cond_frames = n_cond_frames
self.n_copies = n_copies
self.open_clip = instantiate_from_config(open_clip_embedding_config)
def forward(self, vid):
vid = self.open_clip(vid)
vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames)
vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies)
return vid