imaginAIry/imaginairy/modules/midas/api.py
Bryce 316114e660 docs: add docstrings
Wrote an openai script and custom prompt to generate them.
2023-12-15 14:32:01 -08:00

219 lines
6.6 KiB
Python

"""Code for depth estimation with MiDaS models"""
# based on https://github.com/isl-org/MiDaS
from functools import lru_cache
import cv2
import torch
from einops import rearrange
from torch import nn
from torchvision.transforms import Compose
from imaginairy.modules.midas.midas.dpt_depth import DPTDepthModel
from imaginairy.modules.midas.midas.midas_net import MidasNet
from imaginairy.modules.midas.midas.midas_net_custom import MidasNet_small
from imaginairy.modules.midas.midas.transforms import (
NormalizeImage,
PrepareForNet,
Resize,
)
from imaginairy.utils import get_device
ISL_PATHS = {
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "",
"midas_v21_small": "",
}
def disabled_train(self, mode=True):
"""
Overwrite model.train with this function to make sure train/eval mode
does not change anymore.
"""
return self
def load_midas_transform(model_type="dpt_hybrid"):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load transform only
if model_type == "dpt_large": # DPT-Large
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
msg = f"model_type '{model_type}' not implemented, use: --model_type large"
raise NotImplementedError(msg)
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return transform
@lru_cache(maxsize=1)
def load_model(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load network
model_path = ISL_PATHS[model_type]
if model_type == "dpt_large": # DPT-Large
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
model = MidasNet_small(
model_path,
features=64,
backbone="efficientnet_lite3",
exportable=True,
non_negative=True,
blocks={"expand": True},
)
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
msg = f"model_type '{model_type}' not implemented, use: --model_type large"
raise NotImplementedError(msg)
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return model.eval(), transform
@lru_cache
def midas_device():
# mps returns incorrect results ~50% of the time
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_midas(model_type="dpt_hybrid"):
model = MiDaSInference(model_type)
model.to(midas_device())
return model
def torch_image_to_depth_map(image_t: torch.Tensor, model_type="dpt_hybrid"):
model = load_midas(model_type)
transform = load_midas_transform(model_type)
image_t = rearrange(image_t, "b c h w -> b h w c")[0]
image_np = ((image_t + 1.0) * 0.5).detach().cpu().numpy()
image_np = transform({"image": image_np})["image"]
image_t = torch.from_numpy(image_np[None, ...])
image_t = image_t.to(device=midas_device())
depth_t = model(image_t)
depth_min = torch.amin(depth_t, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_t, dim=[1, 2, 3], keepdim=True)
depth_t = (depth_t - depth_min) / (depth_max - depth_min)
return depth_t.to(get_device())
class MiDaSInference(nn.Module):
MODEL_TYPES_TORCH_HUB = ["DPT_Large", "DPT_Hybrid", "MiDaS_small"]
MODEL_TYPES_ISL = [
"dpt_large",
"dpt_hybrid",
"midas_v21",
"midas_v21_small",
]
def __init__(self, model_type):
super().__init__()
assert model_type in self.MODEL_TYPES_ISL
model, _ = load_model(model_type)
self.model = model
self.model.train = disabled_train
self.model.eval()
def forward(self, x):
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
# NOTE: we expect that the correct transform has been called during dataloading.
with torch.no_grad():
prediction = self.model(x)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=x.shape[2:],
mode="bicubic",
align_corners=False,
)
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
return prediction