mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
316114e660
Wrote an openai script and custom prompt to generate them.
107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
"""Code for enhancing facial images"""
|
|
|
|
import logging
|
|
from functools import lru_cache
|
|
|
|
import numpy as np
|
|
import torch
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
from PIL import Image
|
|
from torchvision.transforms.functional import normalize
|
|
|
|
from imaginairy.model_manager import get_cached_url_path
|
|
from imaginairy.vendored.basicsr.img_util import img2tensor, tensor2img
|
|
from imaginairy.vendored.codeformer.codeformer_arch import CodeFormer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
face_restore_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
half_mode = face_restore_device == "cuda"
|
|
|
|
|
|
@lru_cache
|
|
def codeformer_model():
|
|
model = CodeFormer(
|
|
dim_embd=512,
|
|
codebook_size=1024,
|
|
n_head=8,
|
|
n_layers=9,
|
|
connect_list=["32", "64", "128", "256"],
|
|
).to(face_restore_device)
|
|
url = "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth"
|
|
ckpt_path = get_cached_url_path(url)
|
|
checkpoint = torch.load(ckpt_path)["params_ema"]
|
|
model.load_state_dict(checkpoint)
|
|
model.eval()
|
|
if half_mode:
|
|
model = model.half()
|
|
return model
|
|
|
|
|
|
@lru_cache
|
|
def face_restore_helper():
|
|
"""
|
|
Provide a singleton of FaceRestoreHelper.
|
|
|
|
FaceRestoreHelper loads a model internally so we need to cache it
|
|
or we end up with a memory leak
|
|
"""
|
|
face_helper = FaceRestoreHelper(
|
|
upscale_factor=1,
|
|
face_size=512,
|
|
crop_ratio=(1, 1),
|
|
det_model="retinaface_resnet50",
|
|
save_ext="png",
|
|
use_parse=True,
|
|
device=face_restore_device,
|
|
)
|
|
return face_helper
|
|
|
|
|
|
def enhance_faces(img, fidelity=0):
|
|
net = codeformer_model()
|
|
|
|
face_helper = face_restore_helper()
|
|
face_helper.clean_all()
|
|
|
|
image = img.convert("RGB")
|
|
np_img = np.array(image, dtype=np.uint8)
|
|
# rotate to BGR
|
|
np_img = np_img[:, :, ::-1]
|
|
|
|
face_helper.read_image(np_img)
|
|
# get face landmarks for each face
|
|
num_det_faces = face_helper.get_face_landmarks_5(
|
|
only_center_face=False, resize=640, eye_dist_threshold=5
|
|
)
|
|
logger.info(f"Enhancing {num_det_faces} faces")
|
|
# align and warp each face
|
|
face_helper.align_warp_face()
|
|
|
|
# face restoration for each cropped face
|
|
for cropped_face in face_helper.cropped_faces:
|
|
# prepare data
|
|
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True)
|
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(face_restore_device)
|
|
|
|
try:
|
|
with torch.no_grad():
|
|
output = net(cropped_face_t, w=fidelity, adain=True)[0]
|
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
|
del output
|
|
torch.cuda.empty_cache()
|
|
except Exception as error:
|
|
logger.exception(f"\tFailed inference for CodeFormer: {error}")
|
|
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
|
|
|
restored_face = restored_face.astype("uint8")
|
|
face_helper.add_restored_face(restored_face)
|
|
|
|
face_helper.get_inverse_affine(None)
|
|
# paste each restored face to the input image
|
|
restored_img = face_helper.paste_faces_to_input_image()
|
|
res = Image.fromarray(restored_img[:, :, ::-1])
|
|
face_helper.clean_all()
|
|
return res
|