imaginAIry/tests/conftest.py
Bryce 2bd6cb264b feature: large refactor
- add type hints
- size parameter
- ControlNetInput => ControlInput
- simplify imagineresult
2023-12-12 20:54:39 -08:00

169 lines
4.6 KiB
Python

import contextlib
import logging
import os
import sys
from functools import partialmethod
from shutil import rmtree
import pytest
import responses
from tqdm import tqdm
from urllib3 import HTTPConnectionPool
from imaginairy import ImaginePrompt, api, imagine
from imaginairy.log_utils import configure_logging, suppress_annoying_logs_and_warnings
from imaginairy.utils import (
fix_torch_group_norm,
fix_torch_nn_layer_norm,
get_device,
platform_appropriate_autocast,
)
from tests import TESTS_FOLDER
if "pytest" in str(sys.argv):
suppress_annoying_logs_and_warnings()
logger = logging.getLogger(__name__)
# SOLVERS_FOR_TESTING = SOLVER_TYPE_OPTIONS
# if get_device() == "mps:0":
# SOLVERS_FOR_TESTING = ["plms", "k_euler_a"]
# elif get_device() == "cpu":
# SOLVERS_FOR_TESTING = []
SOLVERS_FOR_TESTING = ["ddim", "dpmpp"]
@pytest.fixture(scope="session", autouse=True)
def _pre_setup():
api.IMAGINAIRY_SAFETY_MODE = "disabled"
suppress_annoying_logs_and_warnings()
test_output_folder = f"{TESTS_FOLDER}/test_output"
# delete the testoutput folder and recreate it
with contextlib.suppress(FileNotFoundError):
rmtree(test_output_folder)
os.makedirs(test_output_folder, exist_ok=True)
orig_urlopen = HTTPConnectionPool.urlopen
def urlopen_tattle(self, method, url, *args, **kwargs):
# traceback.print_stack()
# current_test = os.environ.get("PYTEST_CURRENT_TEST", "")
# print(f"{current_test} {method} {self.host}{url}")
result = orig_urlopen(self, method, url, *args, **kwargs)
# raise HTTPError("NO NETWORK CALLS")
return result
HTTPConnectionPool.urlopen = urlopen_tattle
tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
# real_randn = torch.randn
# def randn_tattle(*args, **kwargs):
# print("RANDN CALL RANDN CALL")
# traceback.print_stack()
# return real_randn(*args, **kwargs)
#
# torch.randn = randn_tattle
configure_logging("DEBUG")
with fix_torch_nn_layer_norm(), fix_torch_group_norm(), platform_appropriate_autocast():
yield
@pytest.fixture(autouse=True)
def _reset_get_device():
get_device.cache_clear()
@pytest.fixture()
def filename_base_for_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.name}_"
return filename_base
@pytest.fixture()
def filename_base_for_orig_outputs(request):
filename_base = f"{TESTS_FOLDER}/test_output/{request.node.originalname}_"
return filename_base
@pytest.fixture(params=SOLVERS_FOR_TESTING)
def solver_type(request):
return request.param
@pytest.fixture()
def mocked_responses():
with responses.RequestsMock() as rsps:
yield rsps
def pytest_addoption(parser):
parser.addoption(
"--subset",
action="store",
default=None,
help="Runs an exclusive subset of tests: '1/3', '2/3', '3/3'. Useful for distributed testing",
)
@pytest.fixture(scope="session")
def default_model_loaded():
"""
Just to make sure default weights are downloaded before the test runs
"""
prompt = ImaginePrompt(
"dogs lying on a hot pink couch",
size=64,
steps=2,
seed=1,
solver_type="ddim",
)
next(imagine(prompt))
@pytest.hookimpl()
def pytest_collection_modifyitems(config, items):
"""Only select a subset of tests to run, based on the --subset option."""
filtered_node_ids = set()
node_ids = [f.nodeid for f in items]
node_ids.sort()
subset = config.getoption("--subset")
if subset:
partition_no, total_partitions = subset.split("/")
partition_no, total_partitions = int(partition_no), int(total_partitions)
if partition_no < 1 or partition_no > total_partitions:
raise ValueError("Invalid subset")
for i, node_id in enumerate(node_ids):
if i % total_partitions == partition_no - 1:
filtered_node_ids.add(node_id)
items[:] = [i for i in items if i.nodeid in filtered_node_ids]
print(
f"Running subset {partition_no}/{total_partitions} {len(filtered_node_ids)} tests:"
)
filtered_node_ids = list(filtered_node_ids)
filtered_node_ids.sort()
for n in filtered_node_ids:
print(f" {n}")
def pytest_sessionstart(session):
from imaginairy.utils.debug_info import get_debug_info
debug_info = get_debug_info()
for k, v in debug_info.items():
if k == "nvidia_smi":
continue
k += ":"
print(f"{k: <30} {v}")
if "nvidia_smi" in debug_info:
print(debug_info["nvidia_smi"])