mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
2aef6089e0
Added a composition stage so large images are more coherent
380 lines
13 KiB
Python
380 lines
13 KiB
Python
# pylama:ignore=W0613
|
|
import logging
|
|
import math
|
|
from contextlib import contextmanager
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from torch.cuda import OutOfMemoryError
|
|
|
|
from imaginairy.feather_tile import rebuild_image, tile_image
|
|
from imaginairy.modules.diffusion.model import Decoder, Encoder
|
|
from imaginairy.modules.distributions import DiagonalGaussianDistribution
|
|
from imaginairy.modules.ema import LitEma
|
|
from imaginairy.utils import instantiate_from_config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AutoencoderKL(pl.LightningModule):
|
|
def __init__(
|
|
self,
|
|
ddconfig,
|
|
lossconfig,
|
|
embed_dim,
|
|
ckpt_path=None,
|
|
ignore_keys=None,
|
|
image_key="image",
|
|
colorize_nlabels=None,
|
|
monitor=None,
|
|
ema_decay=None,
|
|
learn_logvar=False,
|
|
):
|
|
super().__init__()
|
|
self.learn_logvar = learn_logvar
|
|
self.image_key = image_key
|
|
self.encoder = Encoder(**ddconfig)
|
|
self.decoder = Decoder(**ddconfig)
|
|
self.loss = instantiate_from_config(lossconfig)
|
|
assert ddconfig["double_z"]
|
|
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
|
self.embed_dim = embed_dim
|
|
if colorize_nlabels is not None:
|
|
assert isinstance(colorize_nlabels, int)
|
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
|
if monitor is not None:
|
|
self.monitor = monitor
|
|
|
|
self.use_ema = ema_decay is not None
|
|
if self.use_ema:
|
|
self.ema_decay = ema_decay
|
|
assert 0.0 < ema_decay < 1.0
|
|
self.model_ema = LitEma(self, decay=ema_decay)
|
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
|
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=None):
|
|
sd = torch.load(path, map_location="cpu")["state_dict"]
|
|
keys = list(sd.keys())
|
|
ignore_keys = [] if ignore_keys is None else ignore_keys
|
|
for k in keys:
|
|
for ik in ignore_keys:
|
|
if k.startswith(ik):
|
|
print(f"Deleting key {k} from state_dict.")
|
|
del sd[k]
|
|
self.load_state_dict(sd, strict=False)
|
|
print(f"Restored from {path}")
|
|
|
|
@contextmanager
|
|
def ema_scope(self, context=None):
|
|
if self.use_ema:
|
|
self.model_ema.store(self.parameters())
|
|
self.model_ema.copy_to(self)
|
|
if context is not None:
|
|
print(f"{context}: Switched to EMA weights")
|
|
try:
|
|
yield None
|
|
finally:
|
|
if self.use_ema:
|
|
self.model_ema.restore(self.parameters())
|
|
if context is not None:
|
|
print(f"{context}: Restored training weights")
|
|
|
|
def on_train_batch_end(self, *args, **kwargs):
|
|
if self.use_ema:
|
|
self.model_ema(self)
|
|
|
|
def encode(self, x):
|
|
h = self.encoder(x)
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
return posterior
|
|
|
|
def decode(self, z):
|
|
try:
|
|
return self.decode_all_at_once(z)
|
|
except OutOfMemoryError:
|
|
# Out of memory, trying sliced decoding.
|
|
try:
|
|
return self.decode_sliced(z, chunk_size=128)
|
|
except OutOfMemoryError:
|
|
return self.decode_sliced(z, chunk_size=64)
|
|
|
|
def decode_all_at_once(self, z):
|
|
z = self.post_quant_conv(z)
|
|
dec = self.decoder(z)
|
|
return dec
|
|
|
|
def decode_sliced(self, z, chunk_size=128):
|
|
"""
|
|
decodes the tensor in slices.
|
|
|
|
This results in images that don't exactly match, so we overlap, feather, and merge to reduce
|
|
(but not completely elminate) impact.
|
|
"""
|
|
b, c, h, w = z.size()
|
|
final_tensor = torch.zeros([1, 3, h * 8, w * 8], device=z.device)
|
|
for z_latent in z.split(1):
|
|
decoded_chunks = []
|
|
overlap_pct = 0.5
|
|
chunks = tile_image(
|
|
z_latent, tile_size=chunk_size, overlap_percent=overlap_pct
|
|
)
|
|
|
|
for latent_chunk in chunks:
|
|
latent_chunk = self.post_quant_conv(latent_chunk)
|
|
dec = self.decoder(latent_chunk)
|
|
decoded_chunks.append(dec)
|
|
final_tensor = rebuild_image(
|
|
decoded_chunks,
|
|
base_img=final_tensor,
|
|
tile_size=chunk_size * 8,
|
|
overlap_percent=overlap_pct,
|
|
)
|
|
|
|
return final_tensor
|
|
|
|
def forward(self, input, sample_posterior=True): # noqa
|
|
posterior = self.encode(input)
|
|
if sample_posterior:
|
|
z = posterior.sample()
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z)
|
|
return dec, posterior
|
|
|
|
def get_input(self, batch, k):
|
|
x = batch[k]
|
|
if len(x.shape) == 3:
|
|
x = x[..., None]
|
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
|
return x
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
|
|
if optimizer_idx == 0:
|
|
# train encoder+decoder+logvar
|
|
aeloss, log_dict_ae = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
optimizer_idx,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="train",
|
|
)
|
|
self.log(
|
|
"aeloss",
|
|
aeloss,
|
|
prog_bar=True,
|
|
logger=True,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
)
|
|
self.log_dict(
|
|
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
|
)
|
|
return aeloss
|
|
|
|
if optimizer_idx == 1:
|
|
# train the discriminator
|
|
discloss, log_dict_disc = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
optimizer_idx,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="train",
|
|
)
|
|
|
|
self.log(
|
|
"discloss",
|
|
discloss,
|
|
prog_bar=True,
|
|
logger=True,
|
|
on_step=True,
|
|
on_epoch=True,
|
|
)
|
|
self.log_dict(
|
|
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
|
|
)
|
|
return discloss
|
|
return None
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
log_dict = self._validation_step(batch, batch_idx)
|
|
with self.ema_scope():
|
|
log_dict_ema = self._validation_step( # noqa
|
|
batch, batch_idx, postfix="_ema"
|
|
)
|
|
return log_dict
|
|
|
|
def _validation_step(self, batch, batch_idx, postfix=""):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
aeloss, log_dict_ae = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
0,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="val" + postfix,
|
|
)
|
|
|
|
discloss, log_dict_disc = self.loss(
|
|
inputs,
|
|
reconstructions,
|
|
posterior,
|
|
1,
|
|
self.global_step,
|
|
last_layer=self.get_last_layer(),
|
|
split="val" + postfix,
|
|
)
|
|
|
|
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
|
self.log_dict(log_dict_ae)
|
|
self.log_dict(log_dict_disc)
|
|
return self.log_dict
|
|
|
|
def configure_optimizers(self):
|
|
lr = self.learning_rate
|
|
ae_params_list = (
|
|
list(self.encoder.parameters())
|
|
+ list(self.decoder.parameters())
|
|
+ list(self.quant_conv.parameters())
|
|
+ list(self.post_quant_conv.parameters())
|
|
)
|
|
if self.learn_logvar:
|
|
print(f"{self.__class__.__name__}: Learning logvar")
|
|
ae_params_list.append(self.loss.logvar)
|
|
opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
|
|
opt_disc = torch.optim.Adam(
|
|
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
|
)
|
|
return [opt_ae, opt_disc], []
|
|
|
|
def get_last_layer(self):
|
|
return self.decoder.conv_out.weight
|
|
|
|
@torch.no_grad()
|
|
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
|
log = {}
|
|
x = self.get_input(batch, self.image_key)
|
|
x = x.to(self.device)
|
|
if not only_inputs:
|
|
xrec, posterior = self(x)
|
|
if x.shape[1] > 3:
|
|
# colorize with random projection
|
|
assert xrec.shape[1] > 3
|
|
x = self.to_rgb(x)
|
|
xrec = self.to_rgb(xrec)
|
|
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
|
log["reconstructions"] = xrec
|
|
if log_ema or self.use_ema:
|
|
with self.ema_scope():
|
|
xrec_ema, posterior_ema = self(x)
|
|
if x.shape[1] > 3:
|
|
# colorize with random projection
|
|
assert xrec_ema.shape[1] > 3
|
|
xrec_ema = self.to_rgb(xrec_ema)
|
|
log["samples_ema"] = self.decode(
|
|
torch.randn_like(posterior_ema.sample())
|
|
)
|
|
log["reconstructions_ema"] = xrec_ema
|
|
log["inputs"] = x
|
|
return log
|
|
|
|
# def to_rgb(self, x):
|
|
# assert self.image_key == "segmentation"
|
|
# if not hasattr(self, "colorize"):
|
|
# self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
|
# x = F.conv2d(x, weight=self.colorize)
|
|
# x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
|
# return x
|
|
|
|
|
|
class IdentityFirstStage(torch.nn.Module):
|
|
def __init__(self, *args, vq_interface=False, **kwargs):
|
|
self.vq_interface = vq_interface
|
|
super().__init__()
|
|
|
|
def encode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def decode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def quantize(self, x, *args, **kwargs):
|
|
if self.vq_interface:
|
|
return x, None, [None, None, None]
|
|
return x
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
|
|
def chunk_latent(tensor, chunk_size=64, overlap_size=8):
|
|
# Get the shape of the tensor
|
|
batch_size, num_channels, height, width = tensor.shape
|
|
|
|
# Calculate the number of chunks along each dimension
|
|
num_rows = int(math.ceil(height / chunk_size))
|
|
num_cols = int(math.ceil(width / chunk_size))
|
|
|
|
# Initialize a list to store the chunks
|
|
chunks = []
|
|
|
|
# Loop over the rows and columns
|
|
for row in range(num_rows):
|
|
for col in range(num_cols):
|
|
# Calculate the start and end indices for the chunk along each dimension
|
|
row_start = max(row * chunk_size - overlap_size, 0)
|
|
row_end = min(row_start + chunk_size + overlap_size, height)
|
|
col_start = max(col * chunk_size - overlap_size, 0)
|
|
col_end = min(col_start + chunk_size + overlap_size, width)
|
|
|
|
# Extract the chunk from the tensor and append it to the list of chunks
|
|
chunk = tensor[:, :, row_start:row_end, col_start:col_end]
|
|
chunks.append((chunk, row_start, col_start))
|
|
|
|
return chunks, num_rows, num_cols
|
|
|
|
|
|
def merge_tensors(tensor_list, num_rows, num_cols):
|
|
print(f"num_rows: {num_rows}")
|
|
print(f"num_cols: {num_cols}")
|
|
n, channel, h, w = tensor_list[0].size()
|
|
assert n == 1
|
|
final_width = 0
|
|
final_height = 0
|
|
for col_idx in range(num_cols):
|
|
final_width += tensor_list[col_idx].size()[3]
|
|
|
|
for row_idx in range(num_rows):
|
|
final_height += tensor_list[row_idx * num_cols].size()[2]
|
|
|
|
final_tensor = torch.zeros([1, channel, final_height, final_width])
|
|
print(f"final size {final_tensor.size()}")
|
|
for row_idx in range(num_rows):
|
|
for col_idx in range(num_cols):
|
|
|
|
list_idx = row_idx * num_cols + col_idx
|
|
chunk = tensor_list[list_idx]
|
|
print(f"chunk size: {chunk.size()}")
|
|
_, _, chunk_h, chunk_w = chunk.size()
|
|
final_tensor[
|
|
:,
|
|
:,
|
|
row_idx * h : row_idx * h + chunk_h,
|
|
col_idx * w : col_idx * w + chunk_w,
|
|
] = chunk
|
|
|
|
return final_tensor
|