imaginAIry/imaginairy/modules/autoencoder.py
Bryce 2aef6089e0 feature: generate large images
Added a composition stage so large images are more coherent
2023-02-16 13:09:14 -08:00

380 lines
13 KiB
Python

# pylama:ignore=W0613
import logging
import math
from contextlib import contextmanager
import pytorch_lightning as pl
import torch
from torch.cuda import OutOfMemoryError
from imaginairy.feather_tile import rebuild_image, tile_image
from imaginairy.modules.diffusion.model import Decoder, Encoder
from imaginairy.modules.distributions import DiagonalGaussianDistribution
from imaginairy.modules.ema import LitEma
from imaginairy.utils import instantiate_from_config
logger = logging.getLogger(__name__)
class AutoencoderKL(pl.LightningModule):
def __init__(
self,
ddconfig,
lossconfig,
embed_dim,
ckpt_path=None,
ignore_keys=None,
image_key="image",
colorize_nlabels=None,
monitor=None,
ema_decay=None,
learn_logvar=False,
):
super().__init__()
self.learn_logvar = learn_logvar
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert isinstance(colorize_nlabels, int)
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.use_ema = ema_decay is not None
if self.use_ema:
self.ema_decay = ema_decay
assert 0.0 < ema_decay < 1.0
self.model_ema = LitEma(self, decay=ema_decay)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=None):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
ignore_keys = [] if ignore_keys is None else ignore_keys
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print(f"Deleting key {k} from state_dict.")
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
try:
return self.decode_all_at_once(z)
except OutOfMemoryError:
# Out of memory, trying sliced decoding.
try:
return self.decode_sliced(z, chunk_size=128)
except OutOfMemoryError:
return self.decode_sliced(z, chunk_size=64)
def decode_all_at_once(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def decode_sliced(self, z, chunk_size=128):
"""
decodes the tensor in slices.
This results in images that don't exactly match, so we overlap, feather, and merge to reduce
(but not completely elminate) impact.
"""
b, c, h, w = z.size()
final_tensor = torch.zeros([1, 3, h * 8, w * 8], device=z.device)
for z_latent in z.split(1):
decoded_chunks = []
overlap_pct = 0.5
chunks = tile_image(
z_latent, tile_size=chunk_size, overlap_percent=overlap_pct
)
for latent_chunk in chunks:
latent_chunk = self.post_quant_conv(latent_chunk)
dec = self.decoder(latent_chunk)
decoded_chunks.append(dec)
final_tensor = rebuild_image(
decoded_chunks,
base_img=final_tensor,
tile_size=chunk_size * 8,
overlap_percent=overlap_pct,
)
return final_tensor
def forward(self, input, sample_posterior=True): # noqa
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
if optimizer_idx == 0:
# train encoder+decoder+logvar
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log(
"aeloss",
aeloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log_dict(
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False
)
return aeloss
if optimizer_idx == 1:
# train the discriminator
discloss, log_dict_disc = self.loss(
inputs,
reconstructions,
posterior,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split="train",
)
self.log(
"discloss",
discloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log_dict(
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False
)
return discloss
return None
def validation_step(self, batch, batch_idx):
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step( # noqa
batch, batch_idx, postfix="_ema"
)
return log_dict
def _validation_step(self, batch, batch_idx, postfix=""):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
0,
self.global_step,
last_layer=self.get_last_layer(),
split="val" + postfix,
)
discloss, log_dict_disc = self.loss(
inputs,
reconstructions,
posterior,
1,
self.global_step,
last_layer=self.get_last_layer(),
split="val" + postfix,
)
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr = self.learning_rate
ae_params_list = (
list(self.encoder.parameters())
+ list(self.decoder.parameters())
+ list(self.quant_conv.parameters())
+ list(self.post_quant_conv.parameters())
)
if self.learn_logvar:
print(f"{self.__class__.__name__}: Learning logvar")
ae_params_list.append(self.loss.logvar)
opt_ae = torch.optim.Adam(ae_params_list, lr=lr, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
)
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
log = {}
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
log["reconstructions"] = xrec
if log_ema or self.use_ema:
with self.ema_scope():
xrec_ema, posterior_ema = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec_ema.shape[1] > 3
xrec_ema = self.to_rgb(xrec_ema)
log["samples_ema"] = self.decode(
torch.randn_like(posterior_ema.sample())
)
log["reconstructions_ema"] = xrec_ema
log["inputs"] = x
return log
# def to_rgb(self, x):
# assert self.image_key == "segmentation"
# if not hasattr(self, "colorize"):
# self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
# x = F.conv2d(x, weight=self.colorize)
# x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
# return x
class IdentityFirstStage(torch.nn.Module):
def __init__(self, *args, vq_interface=False, **kwargs):
self.vq_interface = vq_interface
super().__init__()
def encode(self, x, *args, **kwargs):
return x
def decode(self, x, *args, **kwargs):
return x
def quantize(self, x, *args, **kwargs):
if self.vq_interface:
return x, None, [None, None, None]
return x
def forward(self, x, *args, **kwargs):
return x
def chunk_latent(tensor, chunk_size=64, overlap_size=8):
# Get the shape of the tensor
batch_size, num_channels, height, width = tensor.shape
# Calculate the number of chunks along each dimension
num_rows = int(math.ceil(height / chunk_size))
num_cols = int(math.ceil(width / chunk_size))
# Initialize a list to store the chunks
chunks = []
# Loop over the rows and columns
for row in range(num_rows):
for col in range(num_cols):
# Calculate the start and end indices for the chunk along each dimension
row_start = max(row * chunk_size - overlap_size, 0)
row_end = min(row_start + chunk_size + overlap_size, height)
col_start = max(col * chunk_size - overlap_size, 0)
col_end = min(col_start + chunk_size + overlap_size, width)
# Extract the chunk from the tensor and append it to the list of chunks
chunk = tensor[:, :, row_start:row_end, col_start:col_end]
chunks.append((chunk, row_start, col_start))
return chunks, num_rows, num_cols
def merge_tensors(tensor_list, num_rows, num_cols):
print(f"num_rows: {num_rows}")
print(f"num_cols: {num_cols}")
n, channel, h, w = tensor_list[0].size()
assert n == 1
final_width = 0
final_height = 0
for col_idx in range(num_cols):
final_width += tensor_list[col_idx].size()[3]
for row_idx in range(num_rows):
final_height += tensor_list[row_idx * num_cols].size()[2]
final_tensor = torch.zeros([1, channel, final_height, final_width])
print(f"final size {final_tensor.size()}")
for row_idx in range(num_rows):
for col_idx in range(num_cols):
list_idx = row_idx * num_cols + col_idx
chunk = tensor_list[list_idx]
print(f"chunk size: {chunk.size()}")
_, _, chunk_h, chunk_w = chunk.size()
final_tensor[
:,
:,
row_idx * h : row_idx * h + chunk_h,
col_idx * w : col_idx * w + chunk_w,
] = chunk
return final_tensor