mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-05 12:00:15 +00:00
178 lines
5.8 KiB
Python
178 lines
5.8 KiB
Python
import logging
|
|
from functools import lru_cache
|
|
|
|
import torch
|
|
from diffusers.pipelines.stable_diffusion import safety_checker as safety_checker_mod
|
|
from transformers import AutoFeatureExtractor
|
|
|
|
from imaginairy.enhancers.blur_detect import is_blurry
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SafetyMode:
|
|
STRICT = "strict"
|
|
RELAXED = "relaxed"
|
|
|
|
|
|
class SafetyResult:
|
|
# increase this value to create a stronger `nfsw` filter
|
|
# at the cost of increasing the possibility of filtering benign images
|
|
_default_adjustment = 0.0
|
|
|
|
def __init__(self):
|
|
self.nsfw_scores = {}
|
|
self.special_care_scores = {}
|
|
self.is_filtered = False
|
|
|
|
def add_special_care_score(self, concept_idx, abs_score, threshold):
|
|
adjustment = self._default_adjustment
|
|
adjusted_score = round(abs_score - threshold + adjustment, 3)
|
|
try:
|
|
score_name = _SPECIAL_CARE_DESCRIPTIONS[concept_idx]
|
|
except LookupError:
|
|
score_name = ""
|
|
if adjusted_score > 0 and score_name:
|
|
logger.debug(
|
|
f" 🔞🔞 '{score_name}' abs:{abs_score:.3f} adj:{adjusted_score}"
|
|
)
|
|
self.special_care_scores[concept_idx] = adjusted_score
|
|
|
|
def add_nsfw_score(self, concept_idx, abs_score, threshold):
|
|
if len(self.special_care_scores) != 3:
|
|
raise ValueError("special care scores must be set first")
|
|
adjustment = self._default_adjustment
|
|
if self.special_care_score > 0:
|
|
adjustment += 0.01
|
|
adjusted_score = round(abs_score - threshold + adjustment, 3)
|
|
try:
|
|
score_name = _CONCEPT_DESCRIPTIONS[concept_idx]
|
|
except LookupError:
|
|
score_name = ""
|
|
if adjusted_score > 0 and score_name:
|
|
logger.debug(
|
|
f" 🔞 '{concept_idx}:{score_name}' abs:{abs_score:.3f} adj:{adjusted_score}"
|
|
)
|
|
self.nsfw_scores[concept_idx] = adjusted_score
|
|
|
|
@property
|
|
def nsfw_score(self):
|
|
return max(self.nsfw_scores.values())
|
|
|
|
@property
|
|
def special_care_score(self):
|
|
return max(self.special_care_scores.values())
|
|
|
|
@property
|
|
def special_care_nsfw_score(self):
|
|
return min(self.nsfw_score, self.special_care_score)
|
|
|
|
@property
|
|
def is_nsfw(self):
|
|
return self.nsfw_score > 0
|
|
|
|
@property
|
|
def is_special_care_nsfw(self):
|
|
return self.special_care_nsfw_score > 0
|
|
|
|
|
|
class EnhancedStableDiffusionSafetyChecker(
|
|
safety_checker_mod.StableDiffusionSafetyChecker
|
|
):
|
|
@torch.no_grad()
|
|
def forward(self, clip_input):
|
|
pooled_output = self.vision_model(clip_input)[1]
|
|
image_embeds = self.visual_projection(pooled_output)
|
|
|
|
special_cos_dist = (
|
|
safety_checker_mod.cosine_distance(image_embeds, self.special_care_embeds)
|
|
.cpu()
|
|
.numpy()
|
|
)
|
|
cos_dist = (
|
|
safety_checker_mod.cosine_distance(image_embeds, self.concept_embeds)
|
|
.cpu()
|
|
.numpy()
|
|
)
|
|
|
|
safety_results = []
|
|
batch_size = image_embeds.shape[0]
|
|
for i in range(batch_size):
|
|
safety_result = SafetyResult()
|
|
|
|
for concet_idx in range(len(special_cos_dist[0])):
|
|
concept_cos = special_cos_dist[i][concet_idx]
|
|
concept_threshold = self.special_care_embeds_weights[concet_idx].item()
|
|
safety_result.add_special_care_score(
|
|
concet_idx, concept_cos, concept_threshold
|
|
)
|
|
|
|
for concet_idx in range(len(cos_dist[0])):
|
|
concept_cos = cos_dist[i][concet_idx]
|
|
concept_threshold = self.concept_embeds_weights[concet_idx].item()
|
|
safety_result.add_nsfw_score(concet_idx, concept_cos, concept_threshold)
|
|
|
|
safety_results.append(safety_result)
|
|
|
|
return safety_results
|
|
|
|
|
|
@lru_cache
|
|
def safety_models():
|
|
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
|
monkeypatch_safety_cosine_distance()
|
|
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
|
safety_checker = EnhancedStableDiffusionSafetyChecker.from_pretrained(
|
|
safety_model_id
|
|
)
|
|
return safety_feature_extractor, safety_checker
|
|
|
|
|
|
@lru_cache
|
|
def monkeypatch_safety_cosine_distance():
|
|
orig_cosine_distance = safety_checker_mod.cosine_distance
|
|
|
|
def cosine_distance_float32(image_embeds, text_embeds):
|
|
"""
|
|
In some environments we need to distance to be in float32
|
|
but it was coming as BFloat16.
|
|
"""
|
|
return orig_cosine_distance(image_embeds, text_embeds).to(torch.float32)
|
|
|
|
safety_checker_mod.cosine_distance = cosine_distance_float32
|
|
|
|
|
|
_CONCEPT_DESCRIPTIONS = []
|
|
_SPECIAL_CARE_DESCRIPTIONS = []
|
|
|
|
|
|
def create_safety_score(img, safety_mode=SafetyMode.STRICT):
|
|
if is_blurry(img):
|
|
sr = SafetyResult()
|
|
sr.add_special_care_score(0, 0, 1)
|
|
sr.add_special_care_score(1, 0, 1)
|
|
sr.add_special_care_score(2, 0, 1)
|
|
sr.add_nsfw_score(0, 0, 1)
|
|
return sr
|
|
|
|
safety_feature_extractor, safety_checker = safety_models()
|
|
safety_checker_input = safety_feature_extractor([img], return_tensors="pt")
|
|
clip_input = safety_checker_input.pixel_values
|
|
|
|
safety_result = safety_checker(clip_input)[0]
|
|
|
|
if safety_result.is_special_care_nsfw:
|
|
img.paste((150, 0, 0), (0, 0, img.size[0], img.size[1]))
|
|
safety_result.is_filtered = True
|
|
logger.info(
|
|
f" ⚠️🔞️ Filtering NSFW image. nsfw score: {safety_result.nsfw_score}"
|
|
)
|
|
elif safety_mode == SafetyMode.STRICT and safety_result.is_nsfw:
|
|
img.paste((50, 0, 0), (0, 0, img.size[0], img.size[1]))
|
|
safety_result.is_filtered = True
|
|
logger.info(
|
|
f" ⚠️ Filtering NSFW image. nsfw score: {safety_result.nsfw_score}"
|
|
)
|
|
|
|
return safety_result
|