mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-05 12:00:15 +00:00
360 lines
12 KiB
Python
360 lines
12 KiB
Python
import gc
|
|
import inspect
|
|
import logging
|
|
import os
|
|
import sys
|
|
import urllib.parse
|
|
from functools import wraps
|
|
|
|
import requests
|
|
import torch
|
|
from huggingface_hub import hf_hub_download as _hf_hub_download
|
|
from huggingface_hub import try_to_load_from_cache
|
|
from omegaconf import OmegaConf
|
|
from safetensors.torch import load_file
|
|
from transformers.utils.hub import HfFolder
|
|
|
|
from imaginairy import config as iconfig
|
|
from imaginairy.config import MODEL_SHORT_NAMES
|
|
from imaginairy.modules import attention
|
|
from imaginairy.paths import PKG_ROOT
|
|
from imaginairy.utils import get_device, instantiate_from_config
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
LOADED_MODELS = {}
|
|
MOST_RECENTLY_LOADED_MODEL = None
|
|
|
|
|
|
class HuggingFaceAuthorizationError(RuntimeError):
|
|
pass
|
|
|
|
|
|
class MemoryAwareModel:
|
|
"""Wraps a model to allow dynamic loading/unloading as needed."""
|
|
|
|
def __init__(self, config_path, weights_path, half_mode=None, for_training=False):
|
|
self._config_path = config_path
|
|
self._weights_path = weights_path
|
|
self._half_mode = half_mode
|
|
self._model = None
|
|
self._for_training = for_training
|
|
|
|
LOADED_MODELS[(self._config_path, self._weights_path)] = self
|
|
|
|
def __getattr__(self, key):
|
|
if key == "_model":
|
|
# http://nedbatchelder.com/blog/201010/surprising_getattr_recursion.html
|
|
raise AttributeError()
|
|
|
|
if self._model is None:
|
|
# unload all models in LOADED_MODELS
|
|
for model in LOADED_MODELS.values():
|
|
model.unload_model()
|
|
model_config = OmegaConf.load(f"{PKG_ROOT}/{self._config_path}")
|
|
if self._for_training:
|
|
model_config.use_ema = True
|
|
# model_config.use_scheduler = True
|
|
|
|
model = load_model_from_config(
|
|
config=model_config,
|
|
weights_location=self._weights_path,
|
|
)
|
|
|
|
# only run half-mode on cuda. run it by default
|
|
half_mode = self._half_mode is None and get_device() == "cuda"
|
|
if half_mode:
|
|
model = model.half()
|
|
self._model = model
|
|
|
|
return getattr(self._model, key)
|
|
|
|
def unload_model(self):
|
|
if self._model is not None:
|
|
del self._model.cond_stage_model
|
|
del self._model.first_stage_model
|
|
del self._model.model
|
|
del self._model
|
|
self._model = None
|
|
if get_device() == "cuda":
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
def load_tensors(tensorfile, map_location=None):
|
|
if tensorfile.endswith(".ckpt"):
|
|
return torch.load(tensorfile, map_location=map_location)
|
|
if tensorfile.endswith(".safetensors"):
|
|
return load_file(tensorfile, device=map_location)
|
|
raise ValueError(f"Unknown tensorfile type: {tensorfile}")
|
|
|
|
|
|
def load_model_from_config(config, weights_location):
|
|
if weights_location.startswith("http"):
|
|
ckpt_path = get_cached_url_path(weights_location, category="weights")
|
|
else:
|
|
ckpt_path = weights_location
|
|
logger.info(f"Loading model {ckpt_path} onto {get_device()} backend...")
|
|
pl_sd = None
|
|
try:
|
|
pl_sd = load_tensors(ckpt_path, map_location="cpu")
|
|
except FileNotFoundError as e:
|
|
if e.errno == 2:
|
|
logger.error(
|
|
f'Error: "{ckpt_path}" not a valid path to model weights.\nPreconfigured models you can use: {MODEL_SHORT_NAMES}.'
|
|
)
|
|
sys.exit(1)
|
|
raise e
|
|
except RuntimeError as e:
|
|
if "PytorchStreamReader failed reading zip archive" in str(e):
|
|
if weights_location.startswith("http"):
|
|
logger.warning("Corrupt checkpoint. deleting and re-downloading...")
|
|
os.remove(ckpt_path)
|
|
ckpt_path = get_cached_url_path(weights_location, category="weights")
|
|
pl_sd = load_tensors(ckpt_path, map_location="cpu")
|
|
if pl_sd is None:
|
|
raise e
|
|
if "global_step" in pl_sd:
|
|
logger.debug(f"Global Step: {pl_sd['global_step']}")
|
|
if "state_dict" in pl_sd:
|
|
state_dict = pl_sd["state_dict"]
|
|
else:
|
|
state_dict = pl_sd
|
|
model = instantiate_from_config(config.model)
|
|
model.init_from_state_dict(state_dict)
|
|
|
|
model.to(get_device())
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def get_diffusion_model(
|
|
weights_location=iconfig.DEFAULT_MODEL,
|
|
config_path="configs/stable-diffusion-v1.yaml",
|
|
half_mode=None,
|
|
for_inpainting=False,
|
|
for_training=False,
|
|
):
|
|
"""
|
|
Load a diffusion model.
|
|
|
|
Weights location may also be shortcut name, e.g. "SD-1.5"
|
|
"""
|
|
try:
|
|
return _get_diffusion_model(
|
|
weights_location,
|
|
config_path,
|
|
half_mode,
|
|
for_inpainting,
|
|
for_training=for_training,
|
|
)
|
|
except HuggingFaceAuthorizationError as e:
|
|
if for_inpainting:
|
|
logger.warning(
|
|
f"Failed to load inpainting model. Attempting to fall-back to standard model. {str(e)}"
|
|
)
|
|
return _get_diffusion_model(
|
|
iconfig.DEFAULT_MODEL,
|
|
config_path,
|
|
half_mode,
|
|
for_inpainting=False,
|
|
for_training=for_training,
|
|
)
|
|
raise e
|
|
|
|
|
|
def _get_diffusion_model(
|
|
weights_location=iconfig.DEFAULT_MODEL,
|
|
config_path="configs/stable-diffusion-v1.yaml",
|
|
half_mode=None,
|
|
for_inpainting=False,
|
|
for_training=False,
|
|
):
|
|
"""
|
|
Load a diffusion model.
|
|
|
|
Weights location may also be shortcut name, e.g. "SD-1.5"
|
|
"""
|
|
global MOST_RECENTLY_LOADED_MODEL # noqa
|
|
model_config, weights_location, config_path = resolve_model_paths(
|
|
weights_path=weights_location,
|
|
config_path=config_path,
|
|
for_inpainting=for_inpainting,
|
|
for_training=for_training,
|
|
)
|
|
# some models need the attention calculated in float32
|
|
if model_config is not None:
|
|
attention.ATTENTION_PRECISION_OVERRIDE = model_config.forced_attn_precision
|
|
else:
|
|
attention.ATTENTION_PRECISION_OVERRIDE = "default"
|
|
|
|
key = (config_path, weights_location)
|
|
if key not in LOADED_MODELS:
|
|
MemoryAwareModel(
|
|
config_path=config_path,
|
|
weights_path=weights_location,
|
|
half_mode=half_mode,
|
|
for_training=for_training,
|
|
)
|
|
|
|
model = LOADED_MODELS[key]
|
|
# calling model attribute forces it to load
|
|
model.num_timesteps_cond # noqa
|
|
MOST_RECENTLY_LOADED_MODEL = model
|
|
return model
|
|
|
|
|
|
def resolve_model_paths(
|
|
weights_path=iconfig.DEFAULT_MODEL,
|
|
config_path=None,
|
|
for_inpainting=False,
|
|
for_training=False,
|
|
):
|
|
"""Resolve weight and config path if they happen to be shortcuts."""
|
|
model_metadata_w = iconfig.MODEL_CONFIG_SHORTCUTS.get(weights_path, None)
|
|
model_metadata_c = iconfig.MODEL_CONFIG_SHORTCUTS.get(config_path, None)
|
|
if for_inpainting:
|
|
model_metadata_w = iconfig.MODEL_CONFIG_SHORTCUTS.get(
|
|
f"{weights_path}-inpaint", model_metadata_w
|
|
)
|
|
model_metadata_c = iconfig.MODEL_CONFIG_SHORTCUTS.get(
|
|
f"{config_path}-inpaint", model_metadata_c
|
|
)
|
|
|
|
if model_metadata_w:
|
|
if config_path is None:
|
|
config_path = model_metadata_w.config_path
|
|
if for_training:
|
|
weights_path = model_metadata_w.weights_url_full
|
|
if weights_path is None:
|
|
raise ValueError(
|
|
"No full training weights configured for this model. Edit the code or subimt a github issue."
|
|
)
|
|
else:
|
|
weights_path = model_metadata_w.weights_url
|
|
|
|
if model_metadata_c:
|
|
config_path = model_metadata_c.config_path
|
|
|
|
if config_path is None:
|
|
config_path = iconfig.MODEL_CONFIG_SHORTCUTS[iconfig.DEFAULT_MODEL].config_path
|
|
model_metadata = model_metadata_w or model_metadata_c
|
|
logger.debug(f"Loading model weights from: {weights_path}")
|
|
logger.debug(f"Loading model config from: {config_path}")
|
|
return model_metadata, weights_path, config_path
|
|
|
|
|
|
def get_model_default_image_size(weights_location):
|
|
model_config = iconfig.MODEL_CONFIG_SHORTCUTS.get(weights_location, None)
|
|
if model_config:
|
|
return model_config.default_image_size
|
|
return 512
|
|
|
|
|
|
def get_current_diffusion_model():
|
|
return MOST_RECENTLY_LOADED_MODEL
|
|
|
|
|
|
def get_cache_dir():
|
|
xdg_cache_home = os.getenv("XDG_CACHE_HOME", None)
|
|
if xdg_cache_home is None:
|
|
user_home = os.getenv("HOME", None)
|
|
if user_home:
|
|
xdg_cache_home = os.path.join(user_home, ".cache")
|
|
|
|
if xdg_cache_home is not None:
|
|
return os.path.join(xdg_cache_home, "imaginairy")
|
|
|
|
return os.path.join(os.path.dirname(__file__), ".cached-aimg")
|
|
|
|
|
|
def get_cached_url_path(url, category=None):
|
|
"""
|
|
Gets the contents of a url, but caches the response indefinitely.
|
|
|
|
While we attempt to use the cached_path from huggingface transformers, we fall back
|
|
to our own implementation if the url does not provide an etag header, which `cached_path`
|
|
requires. We also skip the `head` call that `cached_path` makes on every call if the file
|
|
is already cached.
|
|
"""
|
|
|
|
try:
|
|
if url.startswith("https://huggingface.co"):
|
|
return huggingface_cached_path(url)
|
|
except (OSError, ValueError):
|
|
pass
|
|
filename = url.split("/")[-1]
|
|
dest = get_cache_dir()
|
|
if category:
|
|
dest = os.path.join(dest, category)
|
|
os.makedirs(dest, exist_ok=True)
|
|
dest_path = os.path.join(dest, filename)
|
|
if os.path.exists(dest_path):
|
|
return dest_path
|
|
r = requests.get(url) # noqa
|
|
|
|
with open(dest_path, "wb") as f:
|
|
f.write(r.content)
|
|
return dest_path
|
|
|
|
|
|
def check_huggingface_url_authorized(url):
|
|
if not url.startswith("https://huggingface.co/"):
|
|
return None
|
|
token = HfFolder.get_token()
|
|
headers = {}
|
|
if token is not None:
|
|
headers["authorization"] = f"Bearer {token}"
|
|
response = requests.head(url, allow_redirects=True, headers=headers, timeout=5)
|
|
if response.status_code == 401:
|
|
raise HuggingFaceAuthorizationError(
|
|
"Unauthorized access to HuggingFace model. This model requires a huggingface token. "
|
|
"Please login to HuggingFace "
|
|
"or set HUGGING_FACE_HUB_TOKEN to your User Access Token. "
|
|
"See https://huggingface.co/docs/huggingface_hub/quick-start#login for more information"
|
|
)
|
|
return None
|
|
|
|
|
|
@wraps(_hf_hub_download)
|
|
def hf_hub_download(*args, **kwargs):
|
|
"""
|
|
backwards compatible wrapper for huggingface's hf_hub_download.
|
|
|
|
they changed ther argument name from `use_auth_token` to `token`
|
|
"""
|
|
arg_names = inspect.getfullargspec(_hf_hub_download)
|
|
if "use_auth_token" in arg_names.args and "token" in kwargs:
|
|
kwargs["use_auth_token"] = kwargs.pop("token")
|
|
|
|
return _hf_hub_download(*args, **kwargs)
|
|
|
|
|
|
def huggingface_cached_path(url):
|
|
# bypass all the HEAD calls done by the default `cached_path`
|
|
repo, commit_hash, filepath = extract_huggingface_repo_commit_file_from_url(url)
|
|
dest_path = try_to_load_from_cache(
|
|
repo_id=repo, revision=commit_hash, filename=filepath
|
|
)
|
|
if not dest_path:
|
|
check_huggingface_url_authorized(url)
|
|
token = HfFolder.get_token()
|
|
logger.info(f"Downloading {url} from huggingface")
|
|
dest_path = hf_hub_download(
|
|
repo_id=repo, revision=commit_hash, filename=filepath, token=token
|
|
)
|
|
return dest_path
|
|
|
|
|
|
def extract_huggingface_repo_commit_file_from_url(url):
|
|
parsed_url = urllib.parse.urlparse(url)
|
|
path_components = parsed_url.path.strip("/").split("/")
|
|
|
|
repo = "/".join(path_components[0:2])
|
|
assert path_components[2] == "resolve"
|
|
commit_hash = path_components[3]
|
|
filepath = "/".join(path_components[4:])
|
|
|
|
return repo, commit_hash, filepath
|