mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-11-19 03:25:41 +00:00
4705d182d5
- add wip functionality for negative masks - ci: add code linter that removes unused imports - add instructions to install rust on osx
367 lines
13 KiB
Python
367 lines
13 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
|
from models.med import BertConfig, BertModel
|
|
from torch import nn
|
|
|
|
|
|
class BLIP_Retrieval(nn.Module):
|
|
def __init__(
|
|
self,
|
|
med_config="configs/med_config.json",
|
|
image_size=384,
|
|
vit="base",
|
|
vit_grad_ckpt=False,
|
|
vit_ckpt_layer=0,
|
|
embed_dim=256,
|
|
queue_size=57600,
|
|
momentum=0.995,
|
|
negative_all_rank=False,
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(
|
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer
|
|
)
|
|
self.tokenizer = init_tokenizer()
|
|
med_config = BertConfig.from_json_file(med_config)
|
|
med_config.encoder_width = vision_width
|
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
|
|
|
text_width = self.text_encoder.config.hidden_size
|
|
|
|
self.vision_proj = nn.Linear(vision_width, embed_dim)
|
|
self.text_proj = nn.Linear(text_width, embed_dim)
|
|
|
|
self.itm_head = nn.Linear(text_width, 2)
|
|
|
|
# create momentum encoders
|
|
self.visual_encoder_m, vision_width = create_vit(vit, image_size)
|
|
self.vision_proj_m = nn.Linear(vision_width, embed_dim)
|
|
self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
|
|
self.text_proj_m = nn.Linear(text_width, embed_dim)
|
|
|
|
self.model_pairs = [
|
|
[self.visual_encoder, self.visual_encoder_m],
|
|
[self.vision_proj, self.vision_proj_m],
|
|
[self.text_encoder, self.text_encoder_m],
|
|
[self.text_proj, self.text_proj_m],
|
|
]
|
|
self.copy_params()
|
|
|
|
# create the queue
|
|
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
|
|
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
|
|
self.register_buffer("idx_queue", torch.full((1, queue_size), -100))
|
|
self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
|
|
|
|
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
|
|
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
|
|
|
|
self.queue_size = queue_size
|
|
self.momentum = momentum
|
|
self.temp = nn.Parameter(0.07 * torch.ones([]))
|
|
|
|
self.negative_all_rank = negative_all_rank
|
|
|
|
def forward(self, image, caption, alpha, idx):
|
|
with torch.no_grad():
|
|
self.temp.clamp_(0.001, 0.5)
|
|
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
|
|
|
|
text = self.tokenizer(
|
|
caption,
|
|
padding="max_length",
|
|
truncation=True,
|
|
max_length=35,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
|
|
text_output = self.text_encoder(
|
|
text.input_ids,
|
|
attention_mask=text.attention_mask,
|
|
return_dict=True,
|
|
mode="text",
|
|
)
|
|
text_feat = F.normalize(
|
|
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1
|
|
)
|
|
|
|
###============== Image-text Contrastive Learning ===================###
|
|
idx = idx.view(-1, 1)
|
|
idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()], dim=1)
|
|
pos_idx = torch.eq(idx, idx_all).float()
|
|
sim_targets = pos_idx / pos_idx.sum(1, keepdim=True)
|
|
|
|
# get momentum features
|
|
with torch.no_grad():
|
|
self._momentum_update()
|
|
image_embeds_m = self.visual_encoder_m(image)
|
|
image_feat_m = F.normalize(
|
|
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
|
|
)
|
|
image_feat_m_all = torch.cat(
|
|
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
|
|
)
|
|
|
|
text_output_m = self.text_encoder_m(
|
|
text.input_ids,
|
|
attention_mask=text.attention_mask,
|
|
return_dict=True,
|
|
mode="text",
|
|
)
|
|
text_feat_m = F.normalize(
|
|
self.text_proj_m(text_output_m.last_hidden_state[:, 0, :]), dim=-1
|
|
)
|
|
text_feat_m_all = torch.cat(
|
|
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
|
|
)
|
|
|
|
sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
|
|
sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
|
|
|
|
sim_i2t_targets = (
|
|
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
|
|
)
|
|
sim_t2i_targets = (
|
|
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
|
|
)
|
|
|
|
sim_i2t = image_feat @ text_feat_m_all / self.temp
|
|
sim_t2i = text_feat @ image_feat_m_all / self.temp
|
|
|
|
loss_i2t = -torch.sum(
|
|
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
|
|
).mean()
|
|
loss_t2i = -torch.sum(
|
|
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
|
|
).mean()
|
|
|
|
loss_ita = (loss_i2t + loss_t2i) / 2
|
|
|
|
idxs = concat_all_gather(idx)
|
|
self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
|
|
|
|
###============== Image-text Matching ===================###
|
|
encoder_input_ids = text.input_ids.clone()
|
|
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
|
|
|
|
# forward the positve image-text pair
|
|
bs = image.size(0)
|
|
output_pos = self.text_encoder(
|
|
encoder_input_ids,
|
|
attention_mask=text.attention_mask,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
if self.negative_all_rank:
|
|
# compute sample similarity
|
|
with torch.no_grad():
|
|
mask = torch.eq(idx, idxs.t())
|
|
|
|
image_feat_world = concat_all_gather(image_feat)
|
|
text_feat_world = concat_all_gather(text_feat)
|
|
|
|
sim_i2t = image_feat @ text_feat_world.t() / self.temp
|
|
sim_t2i = text_feat @ image_feat_world.t() / self.temp
|
|
|
|
weights_i2t = F.softmax(sim_i2t, dim=1)
|
|
weights_i2t.masked_fill_(mask, 0)
|
|
|
|
weights_t2i = F.softmax(sim_t2i, dim=1)
|
|
weights_t2i.masked_fill_(mask, 0)
|
|
|
|
image_embeds_world = all_gather_with_grad(image_embeds)
|
|
|
|
# select a negative image (from all ranks) for each text
|
|
image_embeds_neg = []
|
|
for b in range(bs):
|
|
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
|
image_embeds_neg.append(image_embeds_world[neg_idx])
|
|
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
|
|
|
|
# select a negative text (from all ranks) for each image
|
|
input_ids_world = concat_all_gather(encoder_input_ids)
|
|
att_mask_world = concat_all_gather(text.attention_mask)
|
|
|
|
text_ids_neg = []
|
|
text_atts_neg = []
|
|
for b in range(bs):
|
|
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
|
text_ids_neg.append(input_ids_world[neg_idx])
|
|
text_atts_neg.append(att_mask_world[neg_idx])
|
|
|
|
else:
|
|
with torch.no_grad():
|
|
mask = torch.eq(idx, idx.t())
|
|
|
|
sim_i2t = image_feat @ text_feat.t() / self.temp
|
|
sim_t2i = text_feat @ image_feat.t() / self.temp
|
|
|
|
weights_i2t = F.softmax(sim_i2t, dim=1)
|
|
weights_i2t.masked_fill_(mask, 0)
|
|
|
|
weights_t2i = F.softmax(sim_t2i, dim=1)
|
|
weights_t2i.masked_fill_(mask, 0)
|
|
|
|
# select a negative image (from same rank) for each text
|
|
image_embeds_neg = []
|
|
for b in range(bs):
|
|
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
|
|
image_embeds_neg.append(image_embeds[neg_idx])
|
|
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
|
|
|
|
# select a negative text (from same rank) for each image
|
|
text_ids_neg = []
|
|
text_atts_neg = []
|
|
for b in range(bs):
|
|
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
|
|
text_ids_neg.append(encoder_input_ids[neg_idx])
|
|
text_atts_neg.append(text.attention_mask[neg_idx])
|
|
|
|
text_ids_neg = torch.stack(text_ids_neg, dim=0)
|
|
text_atts_neg = torch.stack(text_atts_neg, dim=0)
|
|
|
|
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
|
|
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
|
|
|
|
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
|
|
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
|
|
|
|
output_neg = self.text_encoder(
|
|
text_ids_all,
|
|
attention_mask=text_atts_all,
|
|
encoder_hidden_states=image_embeds_all,
|
|
encoder_attention_mask=image_atts_all,
|
|
return_dict=True,
|
|
)
|
|
|
|
vl_embeddings = torch.cat(
|
|
[
|
|
output_pos.last_hidden_state[:, 0, :],
|
|
output_neg.last_hidden_state[:, 0, :],
|
|
],
|
|
dim=0,
|
|
)
|
|
vl_output = self.itm_head(vl_embeddings)
|
|
|
|
itm_labels = torch.cat(
|
|
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
|
|
dim=0,
|
|
).to(image.device)
|
|
loss_itm = F.cross_entropy(vl_output, itm_labels)
|
|
|
|
return loss_ita, loss_itm
|
|
|
|
@torch.no_grad()
|
|
def copy_params(self):
|
|
for model_pair in self.model_pairs:
|
|
for param, param_m in zip(
|
|
model_pair[0].parameters(), model_pair[1].parameters()
|
|
):
|
|
param_m.data.copy_(param.data) # initialize
|
|
param_m.requires_grad = False # not update by gradient
|
|
|
|
@torch.no_grad()
|
|
def _momentum_update(self):
|
|
for model_pair in self.model_pairs:
|
|
for param, param_m in zip(
|
|
model_pair[0].parameters(), model_pair[1].parameters()
|
|
):
|
|
param_m.data = param_m.data * self.momentum + param.data * (
|
|
1.0 - self.momentum
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
|
|
# gather keys before updating queue
|
|
image_feats = concat_all_gather(image_feat)
|
|
text_feats = concat_all_gather(text_feat)
|
|
|
|
batch_size = image_feats.shape[0]
|
|
|
|
ptr = int(self.ptr_queue)
|
|
assert self.queue_size % batch_size == 0 # for simplicity
|
|
|
|
# replace the keys at ptr (dequeue and enqueue)
|
|
self.image_queue[:, ptr : ptr + batch_size] = image_feats.T
|
|
self.text_queue[:, ptr : ptr + batch_size] = text_feats.T
|
|
self.idx_queue[:, ptr : ptr + batch_size] = idxs.T
|
|
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
|
|
|
self.ptr_queue[0] = ptr
|
|
|
|
|
|
def blip_retrieval(pretrained="", **kwargs):
|
|
model = BLIP_Retrieval(**kwargs)
|
|
if pretrained:
|
|
model, msg = load_checkpoint(model, pretrained)
|
|
print("missing keys:")
|
|
print(msg.missing_keys)
|
|
return model
|
|
|
|
|
|
@torch.no_grad()
|
|
def concat_all_gather(tensor):
|
|
"""
|
|
Performs all_gather operation on the provided tensors.
|
|
*** Warning ***: torch.distributed.all_gather has no gradient.
|
|
"""
|
|
tensors_gather = [
|
|
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
|
|
]
|
|
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
|
|
|
output = torch.cat(tensors_gather, dim=0)
|
|
return output
|
|
|
|
|
|
class GatherLayer(torch.autograd.Function):
|
|
"""
|
|
Gather tensors from all workers with support for backward propagation:
|
|
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
output = [
|
|
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
|
|
]
|
|
torch.distributed.all_gather(output, x)
|
|
return tuple(output)
|
|
|
|
@staticmethod
|
|
def backward(ctx, *grads):
|
|
all_gradients = torch.stack(grads)
|
|
torch.distributed.all_reduce(all_gradients)
|
|
return all_gradients[torch.distributed.get_rank()]
|
|
|
|
|
|
def all_gather_with_grad(tensors):
|
|
"""
|
|
Performs all_gather operation on the provided tensors.
|
|
Graph remains connected for backward grad computation.
|
|
"""
|
|
# Queue the gathered tensors
|
|
world_size = torch.distributed.get_world_size()
|
|
# There is no need for reduction in the single-proc case
|
|
if world_size == 1:
|
|
return tensors
|
|
|
|
tensor_all = GatherLayer.apply(tensors)
|
|
|
|
return torch.cat(tensor_all, dim=0)
|