mirror of
https://github.com/brycedrennan/imaginAIry
synced 2024-10-31 03:20:40 +00:00
425 lines
15 KiB
Python
425 lines
15 KiB
Python
"""
|
|
* Copyright (c) 2022, salesforce.com, inc.
|
|
* All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
|
* By Junnan Li
|
|
* Based on timm code base
|
|
* https://github.com/rwightman/pytorch-image-models/tree/master/timm.
|
|
"""
|
|
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from timm.models.helpers import adapt_input_conv
|
|
from timm.models.layers import DropPath, trunc_normal_
|
|
from timm.models.vision_transformer import PatchEmbed
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
"""MLP as used in Vision Transformer, MLP-Mixer and related networks."""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
self.attn_gradients = None
|
|
self.attention_map = None
|
|
|
|
def save_attn_gradients(self, attn_gradients):
|
|
self.attn_gradients = attn_gradients
|
|
|
|
def get_attn_gradients(self):
|
|
return self.attn_gradients
|
|
|
|
def save_attention_map(self, attention_map):
|
|
self.attention_map = attention_map
|
|
|
|
def get_attention_map(self):
|
|
return self.attention_map
|
|
|
|
def forward(self, x, register_hook=False):
|
|
B, N, C = x.shape
|
|
qkv = (
|
|
self.qkv(x)
|
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
q, k, v = (
|
|
qkv[0],
|
|
qkv[1],
|
|
qkv[2],
|
|
) # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
if register_hook:
|
|
self.save_attention_map(attn)
|
|
attn.register_hook(self.save_attn_gradients)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
use_grad_checkpointing=False,
|
|
):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
if use_grad_checkpointing:
|
|
raise RuntimeError("not supported")
|
|
|
|
def forward(self, x, register_hook=False):
|
|
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
"""Vision Transformer
|
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
|
|
https://arxiv.org/abs/2010.11929.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
in_chans=3,
|
|
num_classes=1000,
|
|
embed_dim=768,
|
|
depth=12,
|
|
num_heads=12,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
representation_size=None,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
norm_layer=None,
|
|
use_grad_checkpointing=False,
|
|
ckpt_layer=0,
|
|
):
|
|
"""
|
|
Args:
|
|
img_size (int, tuple): input image size
|
|
patch_size (int, tuple): patch size
|
|
in_chans (int): number of input channels
|
|
num_classes (int): number of classes for classification head
|
|
embed_dim (int): embedding dimension
|
|
depth (int): depth of transformer
|
|
num_heads (int): number of attention heads
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
|
|
drop_rate (float): dropout rate
|
|
attn_drop_rate (float): attention dropout rate
|
|
drop_path_rate (float): stochastic depth rate
|
|
norm_layer: (nn.Module): normalization layer.
|
|
"""
|
|
super().__init__()
|
|
self.num_features = (
|
|
self.embed_dim
|
|
) = embed_dim # num_features for consistency with other models
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
img_size=img_size,
|
|
patch_size=patch_size,
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
] # stochastic depth decay rule
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer,
|
|
use_grad_checkpointing=(
|
|
use_grad_checkpointing and i >= depth - ckpt_layer
|
|
),
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
trunc_normal_(self.pos_embed, std=0.02)
|
|
trunc_normal_(self.cls_token, std=0.02)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {"pos_embed", "cls_token"}
|
|
|
|
def forward(self, x, register_blk=-1):
|
|
B = x.shape[0]
|
|
x = self.patch_embed(x)
|
|
|
|
cls_tokens = self.cls_token.expand(
|
|
B, -1, -1
|
|
) # stole cls_tokens impl from Phil Wang, thanks
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
x = x + self.pos_embed[:, : x.size(1), :]
|
|
x = self.pos_drop(x)
|
|
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x, register_blk == i)
|
|
x = self.norm(x)
|
|
|
|
return x
|
|
|
|
@torch.jit.ignore()
|
|
def load_pretrained(self, checkpoint_path, prefix=""):
|
|
_load_weights(self, checkpoint_path, prefix)
|
|
|
|
|
|
@torch.no_grad()
|
|
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
|
|
"""Load weights from .npz checkpoints for official Google Brain Flax implementation."""
|
|
import numpy as np
|
|
|
|
def _n2p(w, t=True):
|
|
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
|
w = w.flatten()
|
|
if t:
|
|
if w.ndim == 4:
|
|
w = w.transpose([3, 2, 0, 1])
|
|
elif w.ndim == 3:
|
|
w = w.transpose([2, 0, 1])
|
|
elif w.ndim == 2:
|
|
w = w.transpose([1, 0])
|
|
return torch.from_numpy(w)
|
|
|
|
w = np.load(checkpoint_path)
|
|
if not prefix and "opt/target/embedding/kernel" in w:
|
|
prefix = "opt/target/"
|
|
|
|
if hasattr(model.patch_embed, "backbone"):
|
|
# hybrid
|
|
backbone = model.patch_embed.backbone
|
|
stem_only = not hasattr(backbone, "stem")
|
|
stem = backbone if stem_only else backbone.stem
|
|
stem.conv.weight.copy_(
|
|
adapt_input_conv(
|
|
stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
|
|
)
|
|
)
|
|
stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
|
|
stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
|
|
if not stem_only:
|
|
for i, stage in enumerate(backbone.stages):
|
|
for j, block in enumerate(stage.blocks):
|
|
bp = f"{prefix}block{i + 1}/unit{j + 1}/"
|
|
for r in range(3):
|
|
getattr(block, f"conv{r + 1}").weight.copy_(
|
|
_n2p(w[f"{bp}conv{r + 1}/kernel"])
|
|
)
|
|
getattr(block, f"norm{r + 1}").weight.copy_(
|
|
_n2p(w[f"{bp}gn{r + 1}/scale"])
|
|
)
|
|
getattr(block, f"norm{r + 1}").bias.copy_(
|
|
_n2p(w[f"{bp}gn{r + 1}/bias"])
|
|
)
|
|
if block.downsample is not None:
|
|
block.downsample.conv.weight.copy_(
|
|
_n2p(w[f"{bp}conv_proj/kernel"])
|
|
)
|
|
block.downsample.norm.weight.copy_(
|
|
_n2p(w[f"{bp}gn_proj/scale"])
|
|
)
|
|
block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
|
|
embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
|
|
else:
|
|
embed_conv_w = adapt_input_conv(
|
|
model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
|
|
)
|
|
model.patch_embed.proj.weight.copy_(embed_conv_w)
|
|
model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
|
|
model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
|
|
pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
|
|
if pos_embed_w.shape != model.pos_embed.shape:
|
|
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
|
|
pos_embed_w,
|
|
model.pos_embed,
|
|
getattr(model, "num_tokens", 1),
|
|
model.patch_embed.grid_size,
|
|
)
|
|
model.pos_embed.copy_(pos_embed_w)
|
|
model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
|
|
model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
|
|
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
|
|
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
|
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
|
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
|
|
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
|
|
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
|
|
for i, block in enumerate(model.blocks.children()):
|
|
block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
|
|
mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
|
|
block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
|
|
block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
|
|
block.attn.qkv.weight.copy_(
|
|
torch.cat(
|
|
[
|
|
_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
|
|
for n in ("query", "key", "value")
|
|
]
|
|
)
|
|
)
|
|
block.attn.qkv.bias.copy_(
|
|
torch.cat(
|
|
[
|
|
_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
|
|
for n in ("query", "key", "value")
|
|
]
|
|
)
|
|
)
|
|
block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
|
|
block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
|
|
for r in range(2):
|
|
getattr(block.mlp, f"fc{r + 1}").weight.copy_(
|
|
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
|
|
)
|
|
getattr(block.mlp, f"fc{r + 1}").bias.copy_(
|
|
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
|
|
)
|
|
block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
|
|
block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))
|
|
|
|
|
|
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
|
|
# interpolate position embedding
|
|
embedding_size = pos_embed_checkpoint.shape[-1]
|
|
num_patches = visual_encoder.patch_embed.num_patches
|
|
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
|
|
# height (== width) for the checkpoint position embedding
|
|
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
|
# height (== width) for the new position embedding
|
|
new_size = int(num_patches**0.5)
|
|
|
|
if orig_size != new_size:
|
|
# class_token and dist_token are kept unchanged
|
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
|
# only the position tokens are interpolated
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
|
pos_tokens = pos_tokens.reshape(
|
|
-1, orig_size, orig_size, embedding_size
|
|
).permute(0, 3, 1, 2)
|
|
pos_tokens = torch.nn.functional.interpolate(
|
|
pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
|
|
)
|
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
|
print(
|
|
"reshape position embedding from %d to %d" % (orig_size**2, new_size**2)
|
|
)
|
|
|
|
return new_pos_embed
|
|
else:
|
|
return pos_embed_checkpoint
|